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We consider the motion of a heavy mass in an ideal gas in a semi-infinite 
system, with elastic collisions at the boundary. The motion is determined by 
elastic collisions. We prove in the Brownian motion limit the convergence of the 
position and velocity process of the heavy particle to a diffusion process in 
which velocity and position remain coupled. 
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1. I N T R O D U C T I O N  

We consider the motion of a massive particle (molecule) in an ideal gas of 
identical point particles (atoms) in a semi-infinite d-dimensional space 
(d>~ 2), the boundary being a wall which elastically reflects all the particles. 

We consider the system in the Brownian motion limit: The masses of 
the atoms tend to zero, while the mass and the size of the molecule are kept 
constant and the density p and the velocities v of the atoms are scaled like 
p ~ 1/x/-~ and ( Iv l )  ~ 1/x/-~, with ( - )  denoting the average. The position 
and velocity of the molecule thus become a family of stochastic processes 
(Xm(t), Vm(t), t >/0) on the space of the initial conditions of the ideal gas. 

In ref. 1 it is shown that in the infinite system without the presence of 
the wall, the position-velocity process of the molecule (Xm(t), Vm(t); t >1 O) 
converges in distribution to an Ornstein-Uhlenbeck process when m--* 0. 
The proof uses a natural Markov approximation of the mechanical mot ion,  
based on the fact that only "fast" atoms (v ~ 1/x/-~ ) have an effect on the 
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motion of the molecule, but recollisions with fast atoms do not occur when 
m tends to zero. 

Due to the presence of the wall, it is clear that fast atoms also recollide 
with the molecule and an entirely different strategy of proof had to be 
adopted to tackle the problem. 

Before entering a more detailed description of this, we note that a fast 
atom spends, from its first until the last recollision, a time of roughly 
with the molecule. Since by the laws of elastic collisions we have for the 
change of velocities 

A V ~ m v ,  A v ~  -2v  

we may expect that the effect of recollisions with a single atom does not 
spread over a macroscopic time. Given the results of ref. 1, we may there- 
fore expect in the semi-infinite system the convergence of the process 
(Xm(t), Vm(t); t ~> 0) as m --, 0 toward a diffusion process in which position 
and velocity are coupled, since the recollisions depend on the distance of 
the molecule to the wall. We shall show that this is indeed the case. 

The convergence result is proved via relative compactness of the family 
of measures induced by (X,,(t), Vm(t); t>~O) on paths space and by iden- 
tifying a unique limit point by the martingale characterization of diffusion 
processes. (6) This is a very natural procedure, noting the following. Let i =  
1,..., N(t) denote a time-ordered labeling of the different atoms which 
collide with the molecule until time t. Then we may write 

N(t) 

vm( t ) -  v(o)= Y~ fm(vi, x,, ti; t) 
i = 1  

with fm(Vi, Xi, ti; t) denoting the total effect on the molecule during [0, t] 
of atom i, colliding first at ti with precollision velocity v~ and colliding at 
the place x i on the surface S of the molecule. (Note that fm contains the 
effect of a//recollisions of atom i.) 

Using the notation of point processes, i.e., counting measures, we may 
write the sum as 

V m ( t ) - V m ( O ) : f  loNm(dz, dv, dx)fm(X,V,V;t ) (1.1) 

with Nm(d-c , dl), dx) denoting a point process on ~dx  S, which is very 
roughly speaking like a Poisson process with rate 

R m ~ E(Nm(d~. dr, dx))/Vm(s < z)) 

~ Pm [V-- Vm(t)l hm(v) dv dx dz (1.2) 



Brownian Mot ion 651 

hm(v) is the velocity distribution of the ideal gas, and E( . / . )  denotes the 
conditional expectation. Thus, N , , -  Rm is a martingale difference, since by 
definition its conditional expectation is zero. Hence, we might think of the 
R,~ integral of fm as representing "the generator L m of the process Vm, 
acting on V," i.e., we are close to writing, using (1.1) and (1.2), 

E Vm(t)--Vm(S ) -  LmVm(u)du/Vm(r<s ) ~ 0  (1.3) 

If L m is close to a generator of a diffusion, we formulate indeed a mar- 
tingale characterization (very roughly speaking). This is the key observa- 
tion and leading idea. As usual in stochastic integrals like (1.1), to proceed 
to (1.3) we need the function fm(V, X, ~; t) to be nonanticipating, i.e., not 
depending on the future of Vm(t), t > T. But this is of course not our case, 
due to the recollisions. The work is then to approximate the effect of colli- 
sions of one atom by a function depending only on the collision parameters 
of the atom's first collision, i.e., f,n(v, x, ~; t) by ~m(V, X, ~), which is clearly 
possible by the first observation on the recollision time. 

As usual in these proofs, we introduce a stopping time, which helps to 
control error terms and which may be removed for the limit process. Here 
we stop the process when the molecule becomes too fast or when the 
molecule comes too close to the wall. In fact, in the limit process the 
molecule never reaches the wall, i.e., the drift and the diffusion coefficients 
become likewise singular at the wall. 

The molecule is represented by a cube of fixed orientation with one 
face parallel to the wall. This choice removes serious complications due to 
the geometry of more general shapes. One should note, however, that our 
method makes it possible in principle to handle also the case of two or 
more molecules of convex shapes, which is the physically most interesting 
case. 

The results are described in detail in the next section. We state them 
for two and three dimensions. The result in three dimensions is less restric- 
tive on the velocity distribution of the ideal gas. The proof is explicitly writ- 
ten out for the two-dimensional case, mainly for ease of notation and for 
a better presentation of the probabilistic method involved. In Section 3 we 
extract the relevant details of the point process. Bounds on the recollisions 
and tightness of the family of induced measures are discussed in Section 4. 
The Martingale problem is then considered in Section 5. We close with an 
Appendix, where we show that the molecule in the limit process never 
reaches the wall. 
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2. T H E  M O D E L  A N D  R E S U L T S  

We first introduce the heat bath. Let F = (R d 1 x R + ) X R a, d = 2, 3, 
be the one-particle phase space, B(F) its Borel a-algebra, on which we 
define the measure 

dvm=pmdqhm(v)dv, ( q , v ) e F  (2.1) 

with Pm= m ~/2p, p > 0, velocity distribution density hm(v)= md/2h(ml/2v), 
and dq dv the Lebesgue measure on R 2a. 

We define the Poisson field (f2, F, Pro) built on (1, B, dvm) as follows: 
for any B~, B2,..., Bn disjoint sets of B(F), let 

N(Bi) = {the number of particles with coordinates (q, v) e Bi} 

Then for any kl ,  k2,..., kn positive integers 

h Vm(Bi)ki (2.2) 
Pm({co ~Q: N(Bi)=ki ,  i =  1,..., n } ) =  exp[-vm(Bi)]  ki------i~ 

i = 1  

where co=(qi ,  wi)i~z represents an initial configuration of the bath 
particles (atoms). 

The molecule is taken as a d-dimensional cube of side L and mass M. 
We place the molecule into the bath, away from the wall and one face 
parallel to the wall, removing from the initial configuration co all those 
particles that are in the closed region to be occupied by the molecule. The 
Poisson system obtained in this way is again denoted by (g2, F, Pm).  

We now define the dynamics. The orientation of the molecule is fixed 
forever (infinite moment of inertia). The atoms interact with the molecule 
and the wall by elastic collisions. In between collisions the molecule and 
the atoms move freely. To describe the collision between an atom with 
velocity v and the molecule with velocity V, let vn=(en.v)en,  Vn= 
(G" V) en, and v t = v - v n ,  V,= V - V n ,  where en denotes the outgoing 
orthonormal vector of the surface hit by the atom. For  the postcollision 
velocities v'= (G, v;) and V '=  (V'~, V[) we then have that 

v; = vt, V; = V, 
(2.3) 

V'n= - - (1- -~)  Vn+ (2--~)  V,, V'~= (1--~)  V,,+~:vn 

where cr = 2m/(M + m). 
There are collision situations, however, which cannot be dissolved 

mechanically. An atom may collide with an edge of the molecule, two or 
more atoms may collide simultaneously with the molecule, and also 
infinitely many collisions within a finite amount of time may occur. For  
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given initial value (Xo, Vo) for the molecule, we collect all co ~ s for which 
these bad events occur in (2b(X0, Vo) ~ (2 and for 6o ~ ~2b(X o, Vo) we simply 
place the trajectory of the molecule in a cementery A. 

For  c o ~ \ Q b ( X o ,  Vo) the position-velocity process (Xm, Vm) = 
(Z,~(~), V,,(t); t > 0) of the molecule is now defined as follows: the molecule 
will move freely according to its initial velocity until the tim e ~ of its first 
collision with an atom if ~ < z* = inf{t >~ 0: d(Xo + Vot)=0}, where d(X) 
denotes the minimal distance of the molecule from the wall, when its center 
is placed at the point ix(. 

If ~1 ~> z*, we shall stop the motion at time t - -~*;  i.e., (Vm(t); t > /0 )=  
(v,.(t A ~*); t>0) .  

If v, < v*, the velocity of the molecule and of the colliding atom will 
change according to (2.3). Afterward the molecule will move with constant 
velocity V , ~ ( ~ ) =  V~ until the time ~2 of the next collision if ~ 2 < v * =  
inf{t > v~ "d(Xm('~l) + Vm(~+)(t - "~1) = 0},  where X,,(~I) = Xo + Vovx; 
otherwise the motion is stopped at time z*, etc. 

Thus, we otain (Vm(t); t~>0) for all co~s Vo) and X,~(t)= 
.f'o d~ Vm(u). 

For co ~ ~b(Xo, Vo) we set, for all t, V,~(t)= 3 and X~(t)= A. 
One may follow the one-dimensional analysis of Holley (3) to see that 

in our case V~(. ,-)  is a function from [0, ~ ) •  to Rd~[A}  right 
continuous in t and for any fixed t measurable in co. Hence, also the 
process (Xm(t), V,~(t); t~> 0) is measurable in co for any fixed t. 

Following the arguments given in refs. 1 and 2, one can easily show 
that for almost all (Xo, I7o) and for m/> 0 

Pm(g2h(Xo, Vo)) = 0 (2.4) 

provided h(v) has a finite fourth moment. 
We may realize the process (X m, V,,) on the path space 

D([0, ~ ) )  x D([0,  ~ ) )  endowed with the Shorohod topology with induced 
measure P,,.  Thus, we may consider the weak convergence of the family of 
pl"ocesses (Xm, V,~)~>~o on the path space, i.e., the weak convergence of the 
measures Pro- 

In ref. 1, it is shown that the motion of the molecule in the system 
without wall converges as m ~ 0 to an Ornstein-Uhlenbeck process. One 
might therefore, think, that the limit motion now becomes an Ornstein- 
Uhlenbeck process with reflection at the wall. This is not the case. More 
careful thought shows that the drift and the diffusion coefficient of the 
velocity process in the limit will depend on the distance of the molecule 
from the wall. In fact, we shall show that in the limit the molecule will 
never reach the wall. When the molecule is near the wall, most collisions 
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on the side facing the wall will be reeollisions and thus the statistical effect 
due to atoms which did not collide before is changed. 

Indeed, rough estimates show that the diffusion coefficient may be 
obtained by computing the effect of recolliding atoms assuming the 
molecule does not move in between recotlisions. Effects due to the change 
of position and velocity of the molecule enter the drift coefficient only. 

In the case of thermal equilibrium, i.e., if the velocity distribution 
density for the atoms and for the molecule are Maxwellian at the same 
temperature, one knows by the Einstein relation that the drift is propor- 
tional to the diffusion. This provides a heuristic checking of our theorem. 

To prove the convergence result, we need stronger conditions on the 
velocity distribution density h(v). Let (ei)~= 1,..., d be an orthonormal basis 
with ed the outward normal of the wall; then we assume that 

fvi lv~lh(v)dv=O for i=l , . . . ,d  

ff flval/max(lvil, Ivdl h(v) dv < oe i<~ d -  l ) ]  1+;~ for some 

~k,i=ff Iv~l ~= h(v) d r <  

Theorem 2.1. 
diagonal matrix with elements 

a~,~(X) = (4Lp~b3,~M 2)1/2 ~ O. i 

ad, d ( X ) = a d [ l  +(q~3,d)--l ffvd>O 

and let b(X, V)~ R a with components 

(2.5) 

2 > 0  

(2.6) 

for i<~d and k~<max{5, ( 4 - 3 2 ) / 2 + 1 }  

(2.7) 

Suppose that (2.5)-(2.7) hold. Let a(X) be a 

with 

for i = 1  ..... d - 1  

h( v ) dv V3d2F(tl( X, v))] 
3 

1/2 

bi(X, V)= =(4Lp~l , iM -1) Vi=biVg for i = 1  ..... d - 1  

1 dl.) h(v) ~ VdF(q(X, v)) V d b d ( X  , V) = b d 1 -]- ~ l , d  ' ' d > 0  

L IVdl u(X, V)- 
2d(x) max(lv~l; i~< d -  1) 

F 0 / )  = ?] - 1  dy2[y]  r1-1 ~ = d y [ y ] [ y + l ]  
--1 

F(q) = r/ 2 dy d z [ y A z ] [ y A z + l ]  
tl 1 1 

for d = 2  

for d = 3  



Brownian Mot ion 655 

where [ ( . ) ]  denotes the integer part of (-). Then the stochastic differential 
equation 

dX(t) = V(t) dt 

dV(t) = -b(X(t), V(t)) dt + a(X(t)) dW(t) (2.8) 

x ( o )  = Xo, v (o )  = Vo 

with W(t) d-dimensional Brownian motion, defines uniquely a process 
(X(t), V(t); t > 0 )  for all (Xo, Vo), d(Xo)>0, and for almost all (Xo, Vo), 
d(Xo) > 0, the family of processes (Xm(t), Vm(t); t >~ 0) converges weakly as 
m -+ 0 to (X(t), V(t); t ~> 0). 

Remarks. 1. Note that in the Maxwellian case, i.e., h(v)= 
(2n/3 1)d/2 exp(-/3 1vl2/2), (2.6) for d =  3 holds for any 0 < 2 < 1 but it does 
not hold for d =  2. 

2. For d = 3  and h(v) Maxwellian of parameter /3, the process 
(V(t), t 1> 0) has a unique invariant measure 

p(V) dV= (2gflM1) -3/2 exp( -/3M fg[2/2) dV 

with 

tim = 2b/M ~r2 = 2 ~ 1 , i c I 9  3,,i I = fl (2.9) 

To check (2.9), we need only show that 

qS-~ f f  ~ 3 , a  ~>o h(v)dvv32F(rl(X, v))= ~b,_ 1 fI~>o h(v)dye--7- d [v~F(rl(X, v))] 

and this follows easily by integration by parts. 
The last argument shows that we need only that h(v) is a product of 

a Maxwellian in the d direction and an arbitrary function [satisfying 
(2.5)-(2.7)] for the existence of a stationary Maxwellian distribution with 
different /3M in the different directions. The theorem also asserts that the 
limit process is well defined for all times; this means that d(X(t)) will never 
be zero. We prove this in the Appendix. 

Hence, for (fl,f2)ED([O, or)) • D([O, ~ ) )  and B, 5 > 0  let 

zs, a(fx,f2)=inf{t>~O: d(fl(t))<6 or I/2(t)l ~B} (2.10) 

Then we have that for any t > 0 

lim P({*B,a(X, V)< t})=0 
B ~  oo,,5 ~ 0  

(2.11) 

822/55/3-4-12 
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where P is the probability law induced by the process (X(t), V(t); t/>0). 
Therefore, by standard arguments (see, for example, Lemma 11.1.1, ref. 6) 
we need only show the convergence part of Theorem2.1 for -~'~ P m ,  the 
probability law induced by the stopped process (Xm(t), Vm(t); t>~0), to 
pB,~, the probability law induced by (X(t), V(t); t~>0) the stopped limit 
process, where 

~m(t)  = Xo + du ~,.(~) 

~m(t) = V,.(t  A To,~(X~, V~)) 
(2.12) 

The rest of the paper will be consumed by the proof of the convergence. We 
shall give the proof of the result only for d = 2 and assuming that 

h (v)=0  forall vs.t.]vl]<v, f o r s o m e v > 0  (2.7') 

so that (2.6) is trivially satisfied. This way we avoid pure technicalities and 
heavy notations due to higher dimensionality. 

In the next section we analyze the collision process in more detail. 

3. P R E L I M I N A R I E S  

Let c? = cTw ~71 be the boundaries of the molecule, placed at the origin, 
with ~1 denoting the side facing the wall, which we assume to coincide with 
the x axis. For A = c~ x R 2 let B(A) be the e-algebra of the Borel sets of A. 
For given co e f2kf~b(Xo, Vo) we define collision times 

~(qi, wi) = inf{t >~ 0: [Xm(t) -- (qi + wit)] e 3 } (3.1) 

and collision points 

x{r(qi, wi)} = X,,(v(qi, w~))- (qi + wiz(q~, w~)) (3.2) 

and let {tj}j~N, to =0,  denotes the natural ordering of the collision times. 
If t j=z(qi ,  wi), we denote now by (xj, vj) the pair (x{t:}, wt}. Finally, we 
set, for any B, 6 > 0, 

"CB, fi~---72B, 6(Xm, Vm)=inf{t>~O: d(Xm(t))<6 or IVm(t)[ >-B} (3.3) 

For any t > 0 and A ~ B(A) we define the point process 

N(t,A)= ~ )~(tj<t A zs,~)Z((xi, vj)~A ) -  dN(z,x,v) (3.4) 
j ~ l  
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Defining Gt = ~r(N(s, A); 0 <~ s <~ t, A e B(A)), the process (N(t, A), t/> 0) 
can be decomposed as N ( t , A ) = M ( t , A ) + A ( t , A ) ,  where M(t,A) is a 
(P .... G~)-martingale and A(t, A) is a predictable increasing process. (9) We 
shall show below that 

A(t ,A)= f~ du 2(u,A), 2(u, A) = 0 for u >  rB.a (3.5) 

where 2(u,A) roughly represents the collision rate, which depends of 
course on the process (Xm(t), Pm(t);t>~ 0). 

Due to the presence of the wall, which leads to recollisions, we are not 
able to compute the collision rate explicitly. But we have that for any 
A = A  1 • {(x, v)sA: [vy[ >2B}  and 0~<u~<zs, a 

2(u, (A~ c~ J) x A2)= f~A2 dl) hm(1) ) jOm fxeOwA I am I(~) -- Vm(~))n(x)[ (3.6) 

dx I(v ~(u)).(~)l 

x Z(x ~ (2d(Xm(u)) tg v -  )/x L) (3.7) 

and setting r 1/2--9)1 ry(u,v)=2d(2m(U))([vy]+B)_l, we 
have 

2(u, (A, n 81) xA2) 

xz(x<~2d(Xm(u)) tg v + /x L) 

dx +Z(U~m)ffA2dvhm(v)Pm Z(u ~< "t'y(u, v)) fix E al c~ & 

+ z(u < ry(u, v))fx dx I(v- P,~(u)).~x~l C-O[~A 1 

• )~(x ~ 2d(Xm(u)) tg v + /~ L)} (3.8) 

where (v-Vm(U))n(x)=(~)--E'm(U))en(x) ' with e~(x) the outgoing ortho- 
normal vector of 0 at the point x, and 

tg v -+  = (Ivxl ! O)(Ivyl - B ) - i  
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We remark that for u ~> o" m all the atoms which at time zero were in the 
region between the molecule and the wall are no longer there at time u. 

Proof of  (3.5). For any A E B ( A )  define N n ( t , A ) = N ( t , A ) A n =  
N(t/x t,, A); we shall prove that for any n~> 1 and m>~0 

fl A t n A ~ B , 6  

An(t, A) = du 2(u, A) 

where An(t ,A) is the predictable increasing process associated with 
N"(t, A). Hence, (3.5) will follow upon taking the limit n ~ ~ .  For  any 
0~<s~<t and e > 0  let {uj}j=l,k be a sequence of times, u0=s,  uk= t ,  
sup{uj+ ~ -  uj; j>~O } =~. 

Setting A"N(L A) = Nn(uj, A) - N"(uj_ ~, A ), we have that 

Em(Nn(t, A ) - N " ( s ,  A) [ Gs) 

= Em((Nn(t, A) - N"(s, A)) 3((Vj: ANn(j, A) = 1) [ Gs) 

+Em((Nn( t ,A ) -N" ( s ,A ) ) z (3 j :  A N " ( j , A ) >  I)[Gs) (3.9) 

where Em denotes the expectation with respect to Pm' 
Now, the second term on the rhs of (3.9) tends to zero as e ~ 0  

because it is bounded by nPm({3j: ANn(j, A) > 1 ) [Gs), which tends to zero 
as e ~ 0, since the probability of having a multiple collision during Is, T] 
is zero. 

For the first term on the rhs of (3.9) let us introduce for j /> 1 the 
following event: 

Cj = {during (uj_ 1, uj] the molecule does not collide with particles which 

collided first during (0, u:_ 1] } :~ {AN"(L A) = 1 } 

Note that Pm({~j: AN"(j, A) = 1 } :~ CjIGs) converges to zero as e ~ 0, 
because we may again reduce it to the probability of having a multiple 
collision during Is, T]. 

Furthermore, setting, for j ~> 1, 

D(uj 1 ) = { ( q , w ) ~ F : r ( q , w ) < ~ u j _ t / x  t , /x T~,6} 

and 

/3(uj_ 1, A ) =  {(q, w ) e F :  inf{s > uj_l /x tn: 

(Xm(Uj 1)+Vm(uj 1 ) ( s - -u j_ t ) - - (q+ws) )~A1}  

<<. uj A t~ A rl~,~, w ~ A z }  
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we have that 

{ A N ' ( j ,  A ) =  1} n Cj= { N ( / ) ( + :  t, A) \D(u j_  1)) = 1} 

and hence by the strong Markov property of the Poisson field representing 
the bath we have that 

P,~( {AN~( j ,A )  = 1 } (~ Cjt G~) 

= Em(vm(D(Uj_l,  A ) \ D ( u j  _, )) [ Gs) + o(e) (3.10) 

Since 

Em(vm(D(uj_ 1 , A ) \ D ( u ;  1)) [ Gs) 

~Em(E, , (Vm({(q,  w ) 6 F :  w 6 A 2 ,  

q = x + ( w - Vm( uj_ l ) - 2( w - Y'm( uj_ l ) ),c~) e ,(x ) ) u for some x ~ A l 

a n d 0 < u ~ < u j  A t, A ra, a - u j _ l  A t~ A rB, a})lG,j ~)IG~) 

we obtain from (3.10) that 

l imE~  [ N ~ ( t , A ) - N ~ ( s , A ) ] ) ~  { A N ~ ( j , A ) = I } c ~ C j  G, 
e ~ O  1 

k 

=l im Z P , , ( { A N " ( j , A ) = I } c ~ C j I G , )  
~ O j =  1 

~<lim ~ E,, dvhm(v) pm d x ] ( v - V m ( u j  ,)),(x)] 
e ~ O j = l  2 ~:Al 

l A t .  A ~ B , a - u j - 1  A t .  A ~,a) Gs~ • (u j_ 
/ 

=Em du dv hm(v) p,, 
A t n A TB, 6 2 ~ A I  

and (3.11) implies (3.5). 

\ 
ax I(v- Vm(u)).~x~l as) 

(3.11) 

To prove (3.6)-(3.8), we first observe that if A1(~01=/:~, the equal 
sign holds in (3.11) [thus yielding (3.6)]; hence, we need only consider 
collisions in 01. For those, note that if an atom with velocity v = (Vx, Vy) 
collides at time ~7, then, if it collided before with the wall, it did so at time 
t~ -- d()(.,(~))/[ vyl. 

Moreover, if r* denotes the time [smaller than ~-d(Xm(~) ) / lVy[]  at 
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which the molecule and the atom were at the same distance from the wall, 
then 

-' du [(v- Vm(u))x[ >~x (3.12) 

and 

fi~ du Vm(u)y = 2d(X,,(fi)) - vy( fi - z* ) (3.13) 

Using this in the rhs of (3.10) and conditioning as before yields (3.7) and 
(3.8) for u > am. 

To prove (3.8) for u < am, note that if ry(u, v) ~> u, then the colliding 
atom was at time zero in the region 0 4  y<~d(Xm(O)); thus, the collision 
may happen at any point x~81.  Therefore, (3.8) will follow again from 
(3.10)-(3.12). 

Finally, we note that for any u>~0 one may obtain from (3.11) the 
following "basic" upper bound: 

~(I,I, A ) ~ ff  A2 d~) hrn(~)) Dm fxEAl dX 1(I) -- Vm(u ))n(x)[ (3.14) 

R o t a t i o n s .  For  any function H: [-0, oo)• A ~ R d and A ~ B(A) we 
shall denote 

fofxdN(z,x,v)  H(r,x,v)= ~ H(tj, xj, vj) z(tj<<.t, (xj, vj)EA) 
j>l 

If 

(3.15) 

Em(fodU fA2(U, dx, dv) lH(u,x,v)l)< ~176 

where 2(u, dx, dr) denotes the random measure SA 2(u, dx, dr) = )~(u, A), we 
define 

MH(t, A)= fs f A dN(v, x, v) H(z, x, v)-- I] du f A 2(u, dx, dv) H(u, x, y) 

(3.16) 

and if (H(t, x, v); t >t 0) is a G,-predictable process, then (Mz4(t, A); t > 0) is 
a (Pro, G,)-martingale. (5) 
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4. T I G H T N E S S  

We provide first bounds for the number of recollisions that a given 
atom may have with the molecule. Let {tj, k}k~o, 0,o = O, tj, k < tj, k+ 1, be 
the sequence of the recollision times of the j t h  atom (i.e., of the atom that 
collided first at time t/) and for any t > 0 let 

k(t/ , t)=Jsup{k~O:tj,  k~t}  if t /~t  (4.1) 
to if t j � 9  t 

Furthermore, vj, k (vj+k) denotes the pre- (post-) collision velocity of the j th  
atom at time tj, k and d(tj, k)= d(Xm(O,k)). 

For any u < u', we set 

RI(Z~(u,u')={j:UA'Cs, a~tj<U'AZB,~and ](V ) / > ( ~ < ) 2 B }  (4.2) 

k o m m a  4.'I. ForanyO<t<zB, a, jeR~(O,t),andxje#~ 

where 

k-(o,  t )~k(o,  t)<~k+(tj, t) 

z: ( , j ,0=[  
L2d(o) ( 1 ( O - ) A  + B 

k+(tj ,  t ) = F ( 1 ) y ) y i  L - - X j  
L2d(o) ( l ( v / ) x l  - B 

with C1, C2 positive constants. 

C1 

+c23] 
A ( t - -  O)J\  1 ,(v 7 ) y , ] ]  

ProoL S e t  s k ~-- tj.,k - -  tj.,k 1' W e  h a v e  t h a t  

k<,j, o L - xj 
s k ~ ( t -  t/)/~ (4.3) 

k = 1 I (Ox l  - B 

and if ( t -  O) > (L-xj)/(l(vj)xl-4- B), then 

and 

k(,j,,) L -- xj 
sk ~> (4.3') 

k : l  ](1)j)xl -~- g 

d(tj,~ ~)-Bsk <d(tj,~)<~d(tj,~+,)+ Bsk (4.4) 

Let, for the moment, Vk=(Vj, k) + and dk=d(tzk ) and set ~k= 
sk_d),_l(V k ~)-1 [note that dk_l(Vk-1) -1 is the time needed by the j t h  
atom to reach the wall after the ( k -  1)th recollision]. Then 

f~k gm(tj k 1 ~- H)y = - d  k_l  du , - - t ) y  Sk 
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and therefore 

2dk_lE--(vk-l)y+B]-l~sk~2dk_lE--(vk-1)y--B]-I (4.5) 

and by (4.4) 

(v k l)y+ 3B (vk-l)y--B 
dk-l <<.dk << - dk-1 (4.6) (/)k--1)y + B (v k- l)y + B 

Denoting a. = -2B/E(v')y + B] -1 for n/> 1 and ao = -2B/E(vj )y + B], by 
(4.5) and (4.6), then it follows easily that 

koj.t) 2d(tj) i -ki~=t2)2d(tj) k2  ] 
kE= 1 sk~ (v f )y  - B t- - ~ - -  ak_l  ,=o1-[ (1 +a , )  z(k(t/,, t)>~2) 

k(,j,,) 2d(0 ) E ki~i 2d(tj) k ~  ] (4.7) sk>~ B + (1 +a . )  x(k(o,t)>~2 ) ~:1 (vZ)y + - ( v ~ - l L + 8  - 

By (2.3) it is easy to check that 

(v f )~ - [cr i )y + 2B] k ~< (1 - ~)k ( v j ) y  - 2kB 

<~ - ( v k ) y < ~ ( 1 - ~ ) ~ ( v j  ) y + 2 B k  (4.8) 

For the upper bound note that (4.7) yields 

k(tj,t) k(tj, t ) - - I  2d(0) B + aj z(k(0, t)>~2) 
k = l  k = 0  1 

By (4.8) we have that 

k(tj, t ) -  1 2d(tj) k ( , j ,  t ) -  1 2d(tj) 
Z -(v*)~+8 ~> Z (v/);+(2k+l)B 

k = 0  . k = 0  

7> (Vy)y + (Vf)y+B [k(O' t ) -  1] 

(4.9) 

and for k( o, t)>>. 2, 

k(tj,,)- l 2d(0 ) k&l 2B k(tj, t)- t 
Z (v-~.." B L aj>~ E k = l  - ,  , y *  j = o  [ ( v ; - ) y + B ]  ~ , = 1  

2d(o)k 

- 2Bd(O) [k2(o, t)-k(o, t)] (4,10) 
[(v7 )y + B] 2 
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From (4.9) and (4.10) we obtain that 

3" sk~> 2d(ts) k(tj, t) 1 k(tj, t) (4.11) 
~ = o  (v7 ), + g ( v 7 ) , - 8  

Then the upper bound will easily follow from the right inequality of (4.3) 
and (4.11). 

Next we shall prove the lower bound. By (4.8) and the upper bound 
for k(tj, t) we have that ak > 0 and 

I a(vj- )y + 2B 1 k(,,o-1 - 2 B  lg 1 k(tj, t) 
ak <~ cffv]- )y + 2B (v 7 )y - O k = 0  

Hence 

k(,j,,) 2d(tj) 2d(tj) vk(lJ~l 1 ] 
SK<-G + (1 + aj)-- (1 + ao) 

?',fi-l,, +o,)_ 1] 
2B L j=0 

~ I e x p C  (''', ~ . 4 - , ]  

(v]-)y---B k(tj, t)] --2B/[~(v'j ), + 2B] 

Setting 

- 1 }  (4.12) 

a = ~(vf  )y + 2B and c - c~(vf )y 
(v f  )y - B of fv f  )y + 2B 

then a > 0  and ( 1 - a k )  -(~-C)-  1 4 ( 1 - c ) a k ( 1 - a k ) - ( 2 - c ) ;  therefore, 
from (4.12) we obtain that 

k~,s.,} 2d(tj) 
sk<~ k(tj, 011 -ak( t ; ,  t)] -(2-c) (4.13) 

k = 1 ( / ) j - - ) y  - -  g 

Let k o be the root of y(x)= 0, where 

y(x) = x - b(1 - a x )  2 -c ,  b = ( V ] - ) y - B [  L - x j  1 
2d(tj) ( t - t j ) / x  I(vj-~xl--B (4.14) 

Then by the inequalities (4.3), (4.Y), and (4.13) we obtain that k(tj, t)>~k o. 
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T h e o r e m  4.1. The family of processes (tim(t); t ~> 0) is tight. 

ProoL To simplify the notat ion,  we set Vj~k = tim(tiCk) for all k/> 1 
and Vj+o = tim(tf ). Then for all s, t (0 < s < t), we can write 

k(tj, t) k(tj,t) 

Vm( t)--- E E ( V f k -  Vj_k)+ Z ~ (Vfk-- Vj, k) (4.15) 
jERI(O,t) k--O j~R2(O,t) k=0 

By the collision law (2.3) we have that  for all O<~k<~k(tj, t A ra,~) 

= c~(vj ). - ~(Vj_k). - ~(2 - ~) 

k--1 
• ~ ( 1 - - ~ ) J ( V f k _ ~ _ ~ ) . + ~ [ 1 - - ( 1 - - ~ ) k ] ( V j ) .  (4.16) 

i--O,k~l 
and we set 

Urn(t) = y l ( t )  -j- y2( f )  Av y3 ( t )  (4.17) 

where 

Y l(/)-= E c~[k(tj, t)+ 1] (v / ) , ,  
j6: el(O, t) 

k(tj, t) I k -- 1 ] 
y2(t) =--  ~ ~ a(Vj, k )n+~(2 - -cQ ~ ( 1 - - c 0 i ( V f k  i i ) .  

jERI(O,t) k~O i=O,k>~l 
k(tj, t) 

y3( t ) - -  ~ [(1-~)k( ' .~ t ) ] ( v j ) ~ +  ~ ~ (Vfk-- VZk). 
/~ R~(o,o j~ R2(o,~ k=o (4.18) 

Then the tightness of the process (ti,~(t); t > 0) follows once we show that 
the following hold (see ref. 4, Proposi t ion 5.7): 

(i) For  each n, n = 1, 2, there exist fl, 7, c > 0 and c5 m ~ 0 such that 
for all ]t--S]>bm, s<t<.T< +o0, 

E~'6(ly.(t) - y.(s)l  p) ~< c I t -  sl 1 +~ 

(ii) For  all e > 0  and T <  +oe  

lim P~m'6({ sup . l [y l( t ) -y l(s)]+[y2(t)-ya(s)] l>a})=O 
m~O O<s<t<~T 

It-sl <6m 

(iii) For  all e and T <  +oo 

lim - B, Pm ({ sup 
m~O O<~t<~ T 

l/3(t)l 

where - ~'6 - B,6 Em denotes the expectat ion with respect to P m "  
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Proof  o f  (i). From now on we shall write Pm,  Ern instead of pm-B'6, 
- - B ,  6 E m , respectively. First we shall prove (i) for (y2(t); t>~0) with /~=2, 
6m = m e, 1 > 0 > 1/2, and 7 = O- 1 _ 1. Noting that k(tj,  t) = k(tj,  s) for tj < s 
and I t j -  sl > am [-O-m = L(vm -1/2 - B) -1]  and observing the bound on Vm, 
we obtain that 

E m ( [ y 2 ( t )  - y2(s)[  2) 

(4.19) 

where we used the point measure dN(z, x, v) to express the sum in (4.18) 
[cf. (3.4) and (3.14)]. 

The upper bound for k+(r ,  t) given in Lemma 4.1 and the decomposi- 
tion (3.16) yield 

~ f 2(u, dx, d v ) ~ ( k + ( u , t ) + l ) Z B  + 2Em du 

+ 2Em ~ [dN(~, x, v) - dr 2(r, dx, dr)] c~(k+(r, t) + 1 )2 B 

(4.20) 

Using the basic estimate (3.14), it is easy to show that 

Em ^~,' du ;~(u, dx, d v ) c ~ ( k + ( u , t ) + l ) 2 B  < . C 3 ( t - s )  2 (4.21) 

For the second term on the rhs of (4.20) we observe that k+(r ,  t) is a 
predictable function and therefore we can use the quadratic variation to 
estimate as follows: 

12 ) E m  1 [ d N ( z ' x ' v ) - d r 2 ( z ' d x ' d v ) ] c ~ ( k + ( v ' t ) + l ) 2 B  

=Era du 2(u, dx, dv)[c~(k+(u, t )+  1) 2 B] 2 
A "CB, 6 

<~ Cam( t - s) <<. C4(i - s) 2 (4.22) 
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Thus, from (4.20)-(4.22) we obtain 

Em I dN(~, x, v) e(k(z, t) + 1)2 B <~ C5(t - s )  2 (4.23) 

In a similar fashion we obtain that 

Em d N ( r , x , v )  e ( k ( z , t ) +  l)Z B ~C6 0"2 (4.24) 
s - a m )  / ,  0 1 

Next we prove (i) for (yl(t);t>>.O) and we shall do so for 4 > f l > 2 ,  
6m = m ~ 1/2 < 0 </~/4, and ~ = fl/40 - 1. 

Denote by (p(r, x, v; t, s) the function 

0 if ~ > t  

( p ( r , x , v ; t , s ) =  ~ ( k + ( z , t ) + l ) v . ( . )  if t>>.z>~s (4.25) 

[.~(k+(z, t ) - k - ( z , s ) ) v . ~ x )  if r < s  

We have that 

E m dN(r, x, v) ~(k(z, t) + 1 ) v.(x) 
1 

s 

~< 2~Em J dr) q~(u, x, v; t, s) Z(Iv,(x)[ 

+2~Em 1 { d N ( ~ ' x ' v ) - & 2 ( r ' d x ' d v ) z ( r < z e , ~ ) }  

x qo(~, x, v; t, s) (4.26) 

using the decomposition of dN(r, x, v) into its systematic and martingale 
parts [cf. (3.16)]. We first handle the systematic part. Using (3.7) and (3.8), 
we shall show that 

) 
~< C7(]t - sl + a.~) ~ (4.27) 

We establish (4.27) for t, s >1 2am and t, s <~ 2ff m separately. Then (4.27) for 
s ~< 2o- m < t will follow by observing that 

q~(u, x, v; t, s) = cp(u, x, o; t, 20"m) q- (p(U, X, V; 20"m, S) 
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We start with t, S ~ 2 6 m ;  by (3.6) and (3.8) we get 

du R(u, dx, dv) ~o(u, x, v; t, s) z(lVnlx~l > 2B) 

<~ du dv hm(v ) pmo~L [(v - I/m(U))x[ 
S A ZB, 6 

+ du dv hm(v ) pmotL [ ( v -  Vm(~l))y ] IAy 
A zB, 0 y<~ --2B 

+ du dv hm(v) pm(V -- Vm(u))y 
s A rB,  a y~2B  

Xfx dxz(x<~2d(u) tg v+ AL)  o(u,x ,v; t ,s )  
~ c31 

By symmetry of h(-) [cf. (2.5)] we easily get 

du dv hm(v) pm~L I (v -  Vm(U))d 4 Cs I t -  sl 

which takes care of the first term on the rhs of (4.28). 
For the second term we show that 

f l  A ~B6 f x  du dx)~(x~2d(u)tgv + A L) q~(u,x,v;t,s) 

= ~Lvy(t/x zB, a - s/x zB, a) + O{m3/2Vy + m2V2y)[6m + (t - -  S)] } 

Then (4.27) for t, S > 2 ~ r  m will follow easily from (4.21) and (4.30). 

Set 

(4.28) 

(4.29) 

(4.30) 

For simplicity let us assume that t ~< zB, a. We show the essential steps. 

a(u,v)=2d(u)(lvxl_B ) 1+ �9 b(u,v)= 2d(u) 1+ 

and consider the change of variables 

f i ~  vy L - - x  1+ 2d(u) v x - B Vy /i 
X "-'-'~ 

2d(u) vx+B 1 -  



668 Calderoni e t  al. 

( ~ = ~ ( t - u )  1 
H ---~ * l ) y ]  

= ~ ( s - u )  1 Cl 

Furthermore,  observe that 

~b(u, x, v; t, s) = q~(u, x, v; oo, s) - ~b~ for t - u >~ 

L - x  
q~(u, x, v; t, s) = 0 for s - u >/ 

v x - B  

and that 

]d (u ) /d (u ' ) -  iI ~< B(~- lff m 

L - x  

19 x m B 

We express equalities to the order  given in (4.30) by - .The r ight-hand side 
of (4.30) is split into 

f~ dU fx~al dx zq~ 

t L - x  

s 

which we find, observing (4.25) and Lemma 4.1, 

f f  o~LFy [a(u,v) - dx [ x +  1] 
du ~ ~(a(u,v) 1) v o 

o~L 2v y fa(t,v) 

Xa( t , v )  2 (Ivxl-B) J(o(t,v) l)vO 
o~L2vy ~a(s,v) 

X a(s, v) 2(tvxl-B)~(aCs,v) 1)vo 

d gx^ b(t,v) 
XJo d .  (Eu]  - Ex ] )  

dx du([xA (b(u,v)+u)]-Fu]) 

(4.31) 

where b(., v) is the function b under the t ransformat ion u ~ ft. 
The first term on the right is easily computed:  

f• 
[a(u,v) 

dx [x + 1 ] = aLvy(t  - s) duaLvya(U, v) -1 ~(~(.,~) 1)vO (4.32) 
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For  the next terms observe that for t - s ~ O'm, b(t) >~ a(t) and/~ t> a(s, v), so 
that both terms transform to 

- -  dx d(t) 2 du ([u] - [x ]  ) 
Dy ~.'~(a(t,v)-- 1) v 0 

- ~(~(s v ) - ,  ~~ v~ J0x } 
dxd(s)2 ~ d u ( [ u ] - [ x ] )  (4.33) 

, vO 

Now, a( t ,v) , - ,1 /d( t )  and [(d/dt)[1/d(t)-ll<~6-~B, so the mean value 
theorem gives [(vx - B) -1 ~ rn 1/2] 

(4.33) ~< Cc~m~/2Vy(t - s) 

as desired. 
For  t - - s < f f  m the third term on the right of (4.31) may be brought 

into the form 

a(s, v) 2 ( V x -  B) l~(~(~,~)_ i)~ o ~o 

which to the order of interest cancels the second term of (4.31). 
Now we shall deal with t, s < 2~m. By (3.6) and (3.8) we have 

du 2(u, dx, dv) qo(u, x, v; t, s) 

<"1 '̂~B~du~ff~i~'~, d v h " ( V ) p m ~ L ' ( V - V m ( u ) L t v ~ l  

f~] ̂  vB6 f f  Uy 

f~  A TB, 6 f f  + du av s Pm Itv -- Vm(U) U 
vy >~ 2B 

x S ~  a~ dx)c(x<~2d(u) tgv  + A L) cp (u , x , v ; t , s ) }  (4.34) 

As before, we need only compute the second integral of the second term on 
the rhs of (4.34). For  the sake of simplicity, we shall again assume t ~< vs,~ ; 
then, since 

r x, v; t, s) = cp(u, x, v; t, O) - (p(u, x, v; s, O) 
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the same changes of variables used to obtain (4.31) leads to 

dx q~(u, x, v; t, s) du Z(u<<.~y(u,v)) ~ ,  

+Z(u<~y(u ,v) ) ;x  dx)~(x<~Zd(u)tgv + A L)~o(u ,x ,v ; t , s )}  
~ c31 

=Oa)y'Cy(l,V)2Vx du d x ( [ x A u ] + l )  
['~(t/zy(t,v) 1) v 0 

+ du d x ( [ x A u ] + l  
~0 O(a(t,v)-- 1) v 0 

fa(s,v) 
+ ~ , ( ~ ,  v) 2 Vx ~ ~/,,,s,v, du d~ ([x A . l  + 1) 

[ (s/zy(s,v)- 1) v 0 JO 

)} + du d x ( [ x A u ] + l  
�9 JO J(a(s,v)- 1) v 0 

+ O(m3/2Vy( t  + S))  + O(a30W 2) 

= CWyL(t -- s) + O(m3/2Vy(t "b S) -k mS/2V2y) (4.35) 

To get the last equality, we have used 

b fo f:b,,vo fo f( du dx [ x /x u ] + du dx [ x A u ] 
b - - 1 ) v O  " l ( a - -  1) v 0 

b f: f:b--1)vO f(a--1)vO 
= ~ _ du dx [x/x  u] - du dx [x/x  u] 

JO ~0 

= (ab+ 1 - a - b )  z (b> 1, a >  1) 

Thus, (4.27) for t, s~< 20" m follows easily from (4.34) and (4.35). 
Let now consider the martingale part. Once we show that 

Em 1 [dN(z, x, v) - dr 2(z, dx, dr) X(z <~ zs,~)] ~o(~, x, v; t, 

<~ Clo ( ( t -  s) + am) ~/2 (4.36) 

(4.27) and (4.36) will imply (i) with y = i l l40-  1. We observe that 

M ( u ) - M , , . ( u ) =  [dN(%x,v) -dr )~(z ,  dx, dv) z(z<~zB, s)] 

x cp(z, x, v; t, s) Z(lv.(~)[ >~2B) 

is a uniformly integrable (Pro, G,)-martingale with M(O)= O; then, by the 
Burkholder-Davis-Gundy inequality we obtain that 
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Em(IM(t)IZ)<(4f)ZEm dN(u,x,v)r ) 

~< (4 , , ~  fl) a E m dN(u,x,v)r ) 

(4.37) 

H61der's To estimate the right-hand side of (4.37), we may now use 
inequality twice, choosing p = p'fl/2, and obtain 

Em(tM(t)I ~) <~ (4 ~ fl)a {Em(Nl(S ' l)3q'/2q)l/q' 

X E m du fRl~(U,  dx,  dl.))~)2P~.(l,l~7~B,6)J ) 

"~ E m ( N l ( S  , s -- am)flq'/2q) 1/q' 

X Em([ffd~lfRl}.(~l, dx, dv)~2P~(U(TB,~)]l/P)} ( 4 . 3 8 )  

Then, using (4.25) and (3.14) and observing that t - s  > m, we obtain, 
for p > 2 ,  

Em(IM(t)l a) <~ Clo((t-  s) + am) a/2 (4.39) 

and tlaus (4.36) follows. 

Proof of (ii). Let {A,},=I,M, A, = Is,_ ~,s,), be a decomposition of 
[0, T] in nonoverlapping intervals of length 6m/2 ~ ]An[ ~< •m for all n. By 
(4.16)-(4.18) we obtain 

Pro({ sup IUy,(t)-y,(s)] + [y2(t)- y2(s)][ >~}) 
t,s~ [0, T]  
It s[ <. 6m 

<~Pm({3n, j: tjeA, andk(ts, s,)> 1}) 

({;) ; q- Pm dN(z, x, v)c~ Iv,(x)] > 
n = l  n 1 ' 

l--O'm) v 0 l 

xk+(z, sn)~ sn 1)~ 1)>3} ) 

fs. a,,) v 0 

x [c~2k+(r, s . )+  1)2 B] > 3 } ) ]  (4.40) 

822/55/3-4-13 
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Since k+(tj, sn)<~g)m(l+C2/vy)Vy/26 for all t j~A~,  it is obvious  that  
Pm({3n, j: t i tAn and k(tj, s . ) >  1))  goes to zero as m--* 0. 

The  first and second sums on the right of (4.40) are easily es t imated 
by Chebyschev 's  inequali ty using the p correlat ion function of the point  
process N for p > 2. For  the first sum we obtain,  for example,  the bound  
( 0 > 1 )  

C12m-Omp mOm 1/2 m 1 h(v) v2dv =C12c1)pmpO o p/2 (4.41) 

and therefore choosing p > 0/(0 - 1/2), one can easily show that  the former  
sum converges to zero as m ~ 0. 

Similarly, one can prove  that  also the second sum on the rhs of (4.40) 
converges to zero as m ~ 0. 

Fo r  the last sum, observe that  k+(z, s n ) - k  (r, sn)=O if 
I~-s .  11 < ( L - x j ) ( I v x l - B )  i and therefore 

_< L L 
k + (z, Sn) -- k - ( r ,  s . )  -.~ 2d(z) IVyl 6m + (C1 + C2) - ~  (6m + am) 

Then  for m small enough 

)~(k+(r,s .)-k (~,s. 1)>>. l)<<.)~([Vyl >>- l/2(Sm) 

and by Chebyschev 's  inequali ty 

n =  1 - 1  O-m) v 0 1 

• ~k+ (z, sn) - k - ( z ,  s . _  1) 1> 1) ,.-~ 

Em du f 2(u, dx, dv) c~k + (u, sn) lvy[ 
<'5 n = 1  - l  Crm) v 0 [vyl>l/26m 

~< C136ml ff2 q~yl >m 0+~/2 dv h(v) [Vy[ 2 (4.42) 

and this concludes the p roof  of (ii). 

Proof of (iii). Par t  (iii) asserts that  "slow" collisions do not  con- 
tr ibute in the limit m--+ 0. The p roof  of  this assert ion is not  substantial ly 
different (for the two-dimensional  model )  f rom the one given in ref. 1 if one 
notes that  for tj + aj = first t ime after t~ at which the j t h  a tom reaches the 
wall we have that  crj= d(tj)/l(V+)yl >~6/3B> am, for m small enough. 
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As stated before (i)-(iii) imply C-tightness in D([0, ~ ) ,  R) in the 
sense of ref. 4. From the proof of Proposition 5.7 in ref. 4 we obtain for our 
situation even the following result. 

P r o p o s i t i o n  4.1. Let fl and y be as in Theorem 4.1 and for o-~< 1/2, 
?'< ya/fl, and T <  oo let 

Then 

(2  m = { s u p  [Vm(t ) - -  V . , ( s ) l  <~ m ~' } 
[ t - -  s[ < rna, t , s  < oz  

lim P,,(Q~,) = 0 
m ~ 0  

Corollary 4.1. On f2,,, we have that for all e>O, r~,a>>.u>~am and 
m sufficiently small 

,~(u,R')>-fl dvhm(v) pml(V-Vm(U))yl 

x fx dxz(x<~2d(u) tgv~(u)- A L) 

)+(u, R1)<fl dvh~(v)p~l(v-Vm(u))yl 
v vl >~ 2 B  

x fx dx)~(x<~2d(u)tgvm(u) + A L) 
~ O l  

and 

where 

(4.43a) 

(4.43b) 

tg Vm(U)+~_)= I(V-- V~(u))xl +_m y' 
(v + V,,(U))y - m ?' 

Furthermore, we have that for a n y j ~  RI(0, T) 

E~e-(tj, ~j)/,  ~ - ( t j ,  t -  t])] ~< k(tj, t ) ~  [-~e+(tj, ~j) A '/'+ (tj, t -  tj)] 

(4.44) 

where Cj=(L-xj) l (v-Vf  )A -1 and gJ+(tj, a) and ~u (tj, a) are the 
positive and smallest solutions of 

'(v/~7)yl2d(tj) { 2 V j - + _ C + - m  ~" } 
l + ] ( ~ j T _ V T ) y  I g*-+ 7*•  (4.45) 

C -+ are positive constants. 



674 Calderoni et  al. 

Proof. To get (4.42)-(4.44) one can proceed as in (3.7), (3.8), and 
Lemma 4.1, respectively, observing that on ~2 m, I Vj.k- VTl<~rn~', since for 
a l l j eR*(0 ,  T) and k ~k(tj ,  T), Itj,~-tj[ ~2~,.. 

5. L I M I T  P R O C E S S  

To establish Theorem 2.1, we need only prove the uniqueness of the 
limit measure. For this we use the martingale characterization of diffusion 
processes by Stroock and Varadhan. This amounts to showing the 
following. 

T h e o r e m  5.1. For any f e C ~ ( R 2 ) ,  gl ,  g2,'", gk~Co~ and 
U l  ~ U 2 ~  . . -  <Uk~S<I  

lim Em({ f (Vm(t ) ) - f (Em(S))  
m ~ 0  

,,} ,,) - -~  du (~f)(Xm(U), f'm(U 1--[ g,(Y,~(U,), F-m(U~ = 0 
i = 1  

where L~ ~ is the operator 

(~ f ) (X ,  V) = -b(Y,  V) (VJ) (V)  + 1/2[a(X)V~]2 f (V)  

and V~ = (O/&x, O/&y). 
We define a family of processes (~'m(t);t>~0) approximating 

(fire(t); t~>0). For any a > 0  a n d j e  R~(0, oe), set (Jvj)n = @f - V j ) , ,  and 
let ~0(t i, a) be the smallest and positive solution of the following equation 
[cf. Eq. (4.45) for C -+ = 0 ] :  

2d(tj) [1 2Vj- el~0=a (5.1) 
( Jv j ) ,  L + (Avj)~ j 

Then the process (Vm(t); t ~> O) is defined as follows: 

#',,(t) = Vo+ dN(z, x, v){ct(k(% t )+  1 ) (Av) , -  c~(~c(z, 1 )+  1) Vm(z-)} 
i 

where 

- V o + dN(z, x, v) W(% x, v; t) (5.2) 
i 

~(tj ,  t) = [~o( 0, ~j) A ~o( 0, t - t j)]  

f~(tj, t) = o 

if tj<t, xjeOl  

if t j>t or xjr 
~j = (L - x j ) ( A l ) j ) x  1 

Note that dN above integrates only predictable functions. 
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We shall use ~',,, 2m=~O ~'m+XO when computing 
involving V,,, JTm. For this we prove the following. 

T h e o r e m  5 . 2 .  For any t <  oo 

lim Em(] Vm(t) -- Vm(t)l) = 0 (5.2a) 
r n ~ 0  

lim Em(IJf,~(t) - Xm(t)t) = 0 (5.2b) 
m ~ O  

Proof. We need only show (5.2a). We have 

~m(t)- ~m(t)= 2 (vj+~- v;-~)- w(tj,  xj, vj; t) 
j ~  RI(o, t) 

k(tj, t) 

+ Z Z (VS~- VTk) (5.3) 
jER2(O,t)  k = O  

From (iii) of Theorem 4.1 it follows easily that 

( k~,j,,) VTk) ) lim E,~ ~ ~,  ( Vj,\ - = 0 (5.4) 
m ~ O  j~R2(O, t )  k = O  

Furthermore, similarly as in (4.16) and (4.17), we have that for all 
j e  R'(0, T) and k <~ k(tj, T) 

VSk-  Vj, k=a(AVj)y+ Zak(Vj )y+af*(v f  , Vj_k,..., V f  ) (5.5) 

where 

k - 1  

f*(vf-,  VSk ..... V~)=  [1--(1--cOk](AVj)y+~ Z (1--c~)~ (VJ-k-~-~)y 
i = O  

k 1 

- 2 Z ( l -  c0~(VTk_,_~ - Vj)y 
i = 0 , k ~ > l  

- 2a-  ~[ 1 -- ak - (1 - a)k](v 7)y (5.6) 

It is easy to check that 

k(tj, t) ) 

k~=o f * ( v f  , Vjf k ..... Vj 

<~ak+(tj, t)[l(v/)~l +2B]  

+2k+(tj, t) 2 sup {IVT~-Vj-I}+a2gk+(t j ,  t) (5.7) 
k <~ k(t j , t )  
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Hence, by virtue of Proposition 4.1, (5.5)-(5.7) yield for the first sum in 
(5.3) 

l i m E m (  Y' k(,,,,, ) 

~ lmimoEm(fofRldN('c,x,v) 

• I~(k(z, t)-~:(z,  t))(v+ V m ( ' ~ - ) ) y q - O t ( k ( r  , t )2-~(z ,  t) 2) Vm(r )y[) 

+limm~o Em(IofR' dN(r,x,v) 

• [~2k+('c, t)(Vy+2B)+2~k+(,, l)2mY+3Bo~3k+('c, t)3]) (5.8) 

The second term on the right of (5.8) is easily shown to be zero. For the 
first limit on the rhs of (5.8), note that the definition of gt-+(tj, ~j) of (4.45) 
implies that 

0 ~< ~+(t j ,  ~ j ) -  g*- (tj, Cj) ~< 2(C + + C ) m"~2(AUj)y (26) 2 

Therefore, if Avy/dv 2 ~< m-y'/2, then k(tj, t) and ~(tj, t) may differ at most 
by one for m sufficiently small; this is possible only if there exists an integer 
n such that 

In - (p(tj, ~j) t, ~o(tj, t - tj)l 

<<. 

L2(C + -I- C-)(Avj)y rn~,, 

L2(C + A- C ) my,/2 
02 ~--Cm 

Thus, for all j s R l ( 0 ,  t), 

{ ,~'"jlx (AVj)y } N(v]) k(tj, t) # ~.(tj, t) and 7-L-7~rn-~' /2 _c 
n = 0  

where N(vT)= [L(v 7)y/a [(Vj)x] ] and/~  is the interval 

2 V]- - Cm "/ 
L ItavAvl (Avj), 

1 ~ 2Vj- + Cm 7' 
2d(tj) ~ (n - Cm) ] 1 -4 (AV))y 

{~j/x ( t -- t j )eI ,}  (5.9) 

(n-Cm)}]  (5.10) 
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Therefore, the first limit on the right of (5.8) is bounded by 

E m (z(3j~ RI(0, T): (AVj)y (Avj)x 2/> m 

x ldN(z,x,v)c~(2k+(r, t)vyB+2k+(r,t)2B) 

+ Em ( fo fl~l dN(z, x, v) e(lv, l + 2B[k + (~, t) + 1]) 

• 
z ', I-~Vxl A 

The first term is easily shown to converge to zero using Schwartz's 
inequality and observing that, by (2.7), 

Em(Z{" }) ~ D2 f dv h(v) VyZ(Vy >>. vZ/2m 1/2 +~//2) <~ D3m2 (5.12) 

]Ely virtue of (5.11) we obtain for the second term the bound 

D4Pmm'/ fvy>~2e dv 

x hm(v) Vy[Vy + 2B(L6-1 tg v + 1 )] tg v Avx/Avay 

<~Dsm ~' 

where tg v = Vy/Vx and D 2 through D s are constants. 
We have thus established (5.2a). 

Proof of Theorem 5.1. By Theorem 5.2, Theorem 5.1 will follow 
once we show that 

,~im ~ Em f(Vm(t)) --f(P,~(S)) -- du (2#f)(2m(U), F~,~,(U)) 
A ZB, 6 

x H gi(2m(uA, Vm(Ui)) = 0  (5.13) 
i=1 

[/~l <~ DI d(tj) mT' (5.11) 
(Avj)~ 
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Stroock and Varadhan (ref. 6, Corollary 4.2.2 and Exercise 4.6.6) showed 
that we need only prove (5.13) for the functions f l ( V ) = V ~ + V y ,  
f2(V) = V~Vy, and f3(V)= V2+ Vy 2. We shall begin by proving (5.13) for 
f = f ~ ,  i.e., 

mlim ~ Em ({fl(Vm(t))- fl(~'m(S)) 

f l A ~B,6 t - du (b~ ~'m(UL + b,(2~(U), Vm(U)) Pm(U)~) 
A "~B,~ 

))) x ]q gi(2m(~,), ~m(U, = o 
i=1 

(5.14) 

L(  ~'m (t)) - A(Pro(S)) 

= f[ f dN(r, x, v)e Av~ z(x e ~2) 

;of + d N ( ~ , x , v ) [ W ( z , x , v ; t ) - W ( z , x , v ; s ) ] y Z ( x e ~ l ,  lvyl>2B) 

(5.15) 

where 81 and ~'2 denote the boundaries of the molecule parallel and 
orthogonal to the wall, respectively. One easily computes that 

lim E . , ( f [ f d N ( T , x , v ) ~ A v . , z ( x e ~ 2 ) l - [ g i )  
m~O 

I 
f] A "~B, 6 

=2imoEm - A + , +  

t :f A VB,{, 
= mli~l~'lO E m  - -  ^~,.,s 

dbl bVm(u )x l~ gi) 

dub Vm(u- )x [I g,) 

where we have used in the last equality Theorem 5.2 and 

k 

1-[ g, = I] g,(Xm(u~), Vm(u~)) 
i=1 

Because of Theorem 5.2 and Corollary 4.1, we need only evaluate the 
expectation of the second integral on the rhs of (5.15) on Qm- 

Furthermore, we may assume that s > am, t - s > am, and u~ < s -- am. 

(5.16) 

The definition of Vm(t) implies that ~'m(S)= Vm(t) for s>rB,  a and for 
s < rs.a- We have 
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By Corol lary 4.2 we obtain, observing (3.16), that  

lim Em(f '  f dN(z , x , v ) [W(r , x , v ; t ) -W(r , x , v ; s ) ]  v 
m~O k, JO 

IVy[ > 2B) 1- l gi) • ~'(x ~ ~'1~ 

= mlimo E m  - dupmo~L dvh,,,(v)[-v~+2Vm(u-)yVy] 
s A rB,6 y<. --2B 

+ du pm ~ dv hm(v)[v - Vm(u )]y 
0 y > 2 B  

Xfx d x [ W ( u , x , v ; t ) - W ( u , x , v ; S ) ] y  

xz(x~2d(u)  tgvm(U) + A L)} l-I gi) (5.17) 

F rom  now on, for the sake of simplicity, we shall denote  by ~ equalities 
which become true in the limit m ~ 0. For  any s, t > am, we have that  

W(u, x, v; t) -- W(u, x, v; s) 

= W(u,  x, v; oo ) z(u e Is, t-l) 

- [W(u,x, v; o~)-  W(u,x, v; t)] )~(u> t -am)  

+[W(u,x,v;t)-W(u,x,v;s)]z(u~[s-~m,s]) (5.18) 

Next  we prove that  

E m du p ~ L  dv h~(v) [Iv - Vm(bt ) ] y ]  
\ L ' s / ' ,  "CB,6 Ivy] > 2 B  

= E,,, -- du b y  V m ( b l -  )y  
A ~CB, ~ 

• {l  +~7,~ ff~,>odV h(v) IO~,yv~F(rl(Xm(U), V)) 

(5.19) 
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and that 

E m du pm~L dv h, ,(v)[v-  Vm(U )]y 
y > 2 B  

Xfx d x [ 2 W ( u , x , v ; t ) - W ( u , x , v ; o o ) - W ( u , x , v ; S ) ] y  
~01 

\ ~176 

x {2d(s) FOl(Xm(s A Ze, a), v))--2d(t)F(rl(Xm(t A Z,,S), V))} ]-[ gi) 

(5.20) 

then (5.14) will follow from (5.16)-(5.20) by observing that 

d 
~u Em(2d(u) F(q(Xm(u), v) ) ) 

=Em(ZVm(u )[F(q(Xm(u), v))-F'(q(Xm(u), v))q(X~(u), v)]) (5.21) 

For (5.19), by (4.2) and (4.3) of Corollary 4.2, we obtain that 

Em du p,.~ dv hm(v)[v- V,.(u )]y 
y> 2B 

x fx ~ a, dx W(u'x'v; ~176 A L) I~ gi) 

(; ;f. ; ~Em dupm~ dvhm(v) dx[Yc(u, oo)+ l] 
y > 2 B  ~,c ~ c~l 

x {V2--2VyVm(U--)y--TC(U, Oe)v.vVm(U ).v}Z(x<.2d(u)tgv(u)A L) l - lg  0 

(5.22) 
where tg v(u) = lAvA [v, + gm(U )y] 1. 

Set 

L Avy 
~(u, v ) -  

2d(u) Av x ' 

~/l(u, v) = ~o (u, L 
2d(u) tg v(u)'] 
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then the change of variable x --, r~ = ~o(u, ( L - x )  [AVx[ 1) leads to 
t"  

Jx~t dx [~:(u, ~ )  + 1 ] g(x ~< 2d(u) tg v(u) A L) 

= 2d(u)lAvA { Av---- 7 z(2d(u) tg v(u) > L) 

dr/ l +  r/ [ r / + l ]  
oo Avy 

+z(2d(u) tgv(u)<~L) l(,~) d r / ( l + -  Avy 

By Taylor expansion we obtain that 

Ir/o(U, v ) -  ~(u, v)l ~< D3vyVx 2 

and 

(5.23) 

] [r/o(U, v ) -  1] -r/ l(u,  V)+4Vm(U--)y [_Vy+ Vm(u-)y ] 10~(U, V)I 

~<D4(1 +Vy 3 [vxl 3)/v~ 

(5.24) 

(5.25) 

D3, 0 4 are positive constants. 
Since r/o(U, v) = ~(u, v) - 2Fro(u- )y Avy I r/o(U, v) 2, by (5.24), we obtain 

that for m sufficiently small the first integral on the rhs of (5.23) is equal 
to L. For the second integral of (5.25) we have that 

~o(u,v) ( 4Vm( u )y r/~ dr/ 1+  [r /+ 1] 
J~ffu, v) Al)y J 

=~"~ dr/ ( ' 4Vm(u-)y ) 1  [ r / + l ]  
"~ '7o0,, ' 0 -  1 + ~ r/ 

4Vm(u-)Y or v)[r/o(U , v)] 
v>,- v.~(u )~ 

~ r l o ( u , v  ) - -  1 

+ (~,~) dr/([r/+l]-[r/o(U,V)])+o(r/o(U,V)3(AVy) -2) (5.26) 

By (5.25), I[-r/+ 1 ] -  r/o(U, v)l ~< 1 for r/e [-r/l(u, v), r/o(U, v ) -  1] and B large 
enough; therefore, again by (5.25), 

lira ~ mlJ2 fly dv hm(v)E4- 2Vm( -/yl 2dt t y > 2B AVy 

f 
rlo(u,v) 1 

x dr/Irr/+ 1] --r/o(U, v)l 

<~ lim ml/2It  dvhm(v) vy4BZ([r/l(u,v)]-C[rlo(U,v)-l])=O 
m ~ O  O O V y >  2 B  

(5.27) 
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,o d~/ [tl] tl = (t/o - 1 )2/2 + qoF(qo), where F( ) is the Furthermore, since S,0-1 
function defined in Theorem 2.1, then we have that 

[,o(-,~) ( 4Vm(u-)y ) 4Vm(u-)y 
d~ 1+ , [ ~ + ~ J  ~(uov)[~o(U,V)] 

~,o(..v)- 1 Avy vy - V . . ( u -  )y 

=e(u,  v) + 4Vm(u- )yAvj t qo(U, v) F(tlo(U, v)) -2~(u ,  v) 2Vm(u )y 

x [vy + Vm(U- )y] -1 {,o(U, V) F'(no(U, v)) + F(eo(u, v))] (5.28) 

where F ' ( - )  denotes the first derivative of F(.). 
Finally, by (5.23) and (5.26)-(5.28) we obtain 

\ *  s ^ ZB,6 vy>2B 

x )~(x <~ 2d(u) tg Vm(U) + IX L) [I gi) 

E,. du pm~L dv hm(v) 
y>2B 

x {V2y-ZVm(u )yVy--4Vm(U )y Vy~/O(U, v)F'(rlo(U, v))} I ]  g;) 

(5.29) 

Similarly as before, i.e., using the same change of variable and observing 
,o drl [tl] [q + 1 ] = 2tloF(qo), we can show that that S,o- i 

x ~(u, oe ) Vm(U- )y VyZ(X ~ 2d(u) tg Vm(U ) + /X L) I-] gi) 
% 

(5.30) 
Hence (5.17), (5.29), and (5.30) imply 

lim Em(fj  f dN, z,x,v) W(z,x,v; ~))~(xeg,, lvyl> 2B, I]g;)  
m~O 

= lim E m - dubyV~(u-)y l+~bl,], dvh(v) Vy 
m ~ O  A TB, ~ y ~ ' O  

• [2F'(rlo(u,m 1/2v))r/o(U, m-l/2v)+ F(rlo(U, m-1/2v))] t I] gi) 

(5.3~) 
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Then (5.19) will be an easy consequence of (5.13) upon observing that 

~3 [v~F(tl(Y, v))] --- t,y[F'(q(Y, v)) q(X, v) + 2F(t/(X, v))] 
0vy 

where tl(Y,,(u), v)= Lvy/2d(u)[vx] (el. Theorem 2.1). 
To prove (5.20), we first note that 

E (f; f dN(r,x,v)[W(r,x,v;oo)-W(z,x,v;t)]y 
cr m 

x 2'(x e a l ,  Lvyl > 2B) 1~[ g/)  

x z(x e ~,, Ivyl > 2B) [-[ g,) 

~E,, dup,,~ dv h~,(v) dx [~:(u, o o ) - ~ ( u ,  t)] 
y> 2B ~Ot 

• v~z(x <. 2d(u) tg v(u)/x L) [-[ gi) 

(f~ A~B~ , dx [~,u, t ) r~(u,  s)3 zn dv h,,,(v) fx~Ot + E m du Pm O~ ffv)> 

• v~)~(x <. 2d(u) tg v(u)/x L) I-I gi) (5.32) 

Then, using the change of variables 

x~q=qo(u , (L-x )  lAvx] 1), u~a=q~(u, t -u)  

and proceeding in the same way as in (4.31) and (4.33), we can easily get 
(5.20). 

Now let us consider the case f = f2; we have to prove that 

-~ dbl b x Vm(bl-  )x Vm( lA- )y Jc by(Xm(u) ,  Vm(bl- )) ~rm(U- )x ~1 gi = 0 
A "CB, 6 
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For simplicity we put ~'o = 0. We introduce for all 0 < u ' <  u 
( ,  u '  r  

G(u', U) J0 J dN(z, x, v) W(z, x, v; oe) Z(lvn(x) ] > 2B) 

and we obtain that 

f~(Pm(t))--L(Pm(S)) 

= ffo dN(r, x, v) W(r, x, v; OO )y Vm('C )x Z(X e "81, IVyl >2B) 

ffj aN(z, x, v)o~ Avx E'm(r )y Z(x e + ~) 

ff' + dN(~,x,v)[W(r,x,v;t)-W(r,x,v;oO)]yVm(~ )xZ(IVyl > 2B) 
o- m 

;f/ + dN(~,x,v)[W(r,x,v;oe)- W(~,x,v;s)]y ~'m(~-)xZ(IVyl >2B)  
-- (r m 

+ ffj dN(z, x, v)c~ Avx [G(r, t) - Vm(Z -- )]y Z(X e 

+ dN(~,x,v)~Jvx[G(~,t)-G(~,s)]yZ(xeJ2) (5.33) 
- -  o- m 

Proceeding as (5.16) and (5.31), we get that 

Em(( f f jdN(v ,x ,v )~AvxVm(v  )y )~(X E ~2) 

+ ffjdN(~,x, v)~vy ~'m(~ )~ Z(Xe~':)} I-[ gi) 
I t A TB,~ 

~Em - ~fi^~B du [b~Vm(u-)y Vm(u )y 

+b~(X~(u)) V~(u-)~ ~(u )A lq g~) 

+ E m du 2C~pmLVm(u-)y ~/m(U )y 

X (VytlO(U , V)F'(tlo(U, v))--F(tlo(U, v))) [I g,) (5.34) 

where qo(U, v) is the function defined in (5.26) and ( ( . ) )  denotes the mean 
with respect to the m e a s u r e  hm(V ) dr). 
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In a similar fashion as in (5.30), one can easily show that 

E m ({If, t_ ~mdN(z,x, v)[W(r,x, v; t ) -  W(r,x, v; oO)]y ~Tm(T,--)x)~(]Vy,>2B) 

+ff~ dN(r,x,v)FW(r,x,v;~)-W(r,x,v;S)]y 
ffm 

~Em ({ -2pm~L~'m(t-)x d(t)(vyF(q(Xm(t /x rB, a), v))) 

-- V~(s )xd(s)(vyFOT(Xm(S A "CB, a), V)))} l~ gi) (5.35) 

and, by Corollary 4.1, 

2 i m o E m ( ~  f dm{x,x ,v)o~AuxEG{~, t ) -~1m(r  ) ] y Z ( X ~ 2 ) I - I g i )  

= l i m  Em(;~ ̂ ~:B'~ 
m ----~ O A "CB, 5 

du 2pLM 1~1, x 

x dN(r,x,v)[W(r,x,v;t)-W(z,x,v;u)]yVm(r )xI]gi 
-- ~m 

~- lmim~oEm(ff A'cB'~A "CB,8 du 2pLM-l~l.x Vm(u )x 2pmo~Ld(u) 

x (vyF(rl(Xm(u), v))} H g,) (5.36) 

Note that dVm(t )x=~Avxz(X~Sz)dN(r,x, v) and 

E m du 2pLM 1~ 1,x Vm(U- )x 2pm~ v))) ~I gi 

=Em(ff~ dN(*,x,v)ocAGz(xe32) 

• {2pm~Ld(~)(v~F(~(X~(.~), v)))} [I g~) 
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Then integration by parts and using (5.36) shows that 

Em (fff dN(~, x, v)a Av~ [-G(v, t ) -  V~(v- )]y Z(X e ~2) [-I g~) 

Em (2pmctL{ ~'m(t )~ d(t)<vyF(q(Xm(t), l)))) 
% 

-- ~'m(S )xd(s)<vyF(t l (Xm(S) ,  V)))} l~ gi)  

x (F(rl(Xm(u), v)) q(X,.(u), v)F'(17(Xm(U), v))) ~ gi) (5.37) 

Finally, we observe that G(u', u) as a function of u is increasing and for all 
"c < s, Em( G( z, t) - G( z, s ) ) <~ D4 for some positive constant D4; therefore, 

lim E m dN(r, x, v)e Avx )~(x �9 ~2)[G(~, t) - G(~, S) ]y 1-[ gi = 0 
m~O A TB,~ 

(5.38) 
so that for f = f 3  will easily follow from (5.34), (5.35), (5.37), and (5.38). 

Finally, we shall consider the case f = f3, i.e., we have to prove that 

lim Em f3(Pm(t))--f3(Vm(S))-- du (-2bxVm(u-)x Vm(u )x) 
m~O ^ ZB,8 

Since by definition of the process (G(t, oo); t >~ 0) and (5.2) we have that 

f3(Vm(t))-- f3(Vm(s)) 

=f;  f dN(z,x,v)(aAvx)2Z(x�9 

+ 2 f j f d N ( z , x , v ) ~ A v x V m ( v  )xZ(Xe~2) 

+ ff f dN(~, x, v) W(~, x, v; ~ )~ Z(x e U~, Iv~l >2B) 

f f  dN(~, x, v) W(z, x, v; OO)y X(x �9 ~'1, Ivy[ >2B)  + 2  

-~- [Vm(t  )2y--G(t, 00) 2] - [ g m ( s - ) 2 y - G ( s ,  00) 2] (5.40) 
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Then,  in a similar fashion as in (5.34), one can easily see that  

- f f f dN(~ , x , z ) ) (o~Avx )2~(xE~2) )~g i )  

I l l  A TB, 6 / 
= lim E m du [~72-bVm(u-)x] 1-I gi (5.41) 

m~O A ZB, a 

Next  we shall deal with the expecta t ion of the third term on the rhs of 
(5.40). Since o('[~c(u,m)+l]2Av~ is the only par t  of W("c,x,v;~)~ 
that  contr ibutes  in the limit m - - , 0 ,  by (5.23)-(5.28) and (5.30) with 
~2 m -  1/2(/)y)3 instead of ~m-l/2I:~(u-)y one can prove  that  

lim F~m(fffdN(T,,x, 1) )W( 'c ,x ,v ;oo)2~(x~l ,  lUyl~2g) E g i )  m~0 

= lim E m du4pLM-Zqb3,y 1--}- (fP3, y)  - 1  dvhm(v) Vy 
m ~ 0 Ivyl > 2B 

x 2F(q~ v))] 1~ gO (5.42) 

Therefore,  to complete  the p roof  of  (5.13) with f= f3 ,  we need only show 
that  

({ ;/f lira E m 2 dN('r,x,v) W(z,x,v;~)yG('r,~)yX(x~:~l, lvyl>2B ) m~0 

(;: ) = lim E m -- du 2by(X,,(u), Vm(u-))Vm(u )y [~ gi (5.43) m ---+ O 

Since G(u', u) r G(u', ~ ) only if u - am < u' < u and since for all T <  + 

lim E m ( : : f  dN(r,x,v)[W(r,x,v;m)2y-W(r,x,v;T)2y] m~O 

x Z(X E ~'1, ]vyf > 2B) )  = 0 

822/55/3-4-14 
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we have that the lhs of (5.43) is equal to 

lim E m 2 dN(r,x,v) W('c,x,v; ~)yG('c, OO)yZ(XG~l, ]Vyl>2B) 
r n ~ O  ~ 0  

;jr - dN(r, x, v)[ W('c, x, v; OO)y- W(~c, x, v; t)y] G(r, t)y 
-- ffm 

X)~(Xe~x, IV~I > 2 B )  

+ dN(~ ,x ,v ) [W(~ ,x ,v ;oo)y -W(~ ,x ,v ; s )y la (z , s )y  
s ry m 

xz ( x6~ l ,  lVy l>2B)}I lg i )  (5.44) 

Now note that 

Em dN(z, X,  u ) [  W ( T ,  X ,  V; O0 ) y - -  W(75,  x ,  I); t ) y ]  a ( r ,  t)y 
--~rrn �9 

X Z ( x ~  Jm, Iv, I > 2 B ) I ~  gi) 

~ E m dN(z, x, v)[ W('~, x, v; OO )y -  W('c, x, v; t)y] G(r, OO)y 
--tim ' 

x z(x ~ ~ ,  Iv~l > 2B) 

- 1/2 f t ~ f dN(z, x, v)[ W(z, x, v; OO)y- W(z, x, v; t)y] 2 
m 

and set for all u < t 

and 

(5.45) 

At(u)=  du 2(u, dx, dv)[W(u,x,v; oo)y-W(u,x ,v; t )y]  
Ivy[ > 2B 

Mr(u) = dN(z, x, v)[ W(z, x, v; OO)y- W(~, x, v; t)y] 

x z ( X ~ l ,  Ivy] >2B)--At(u) 
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Then (M,(u); u 4 t) is a Grmartingale and therefore 

Em dN(r, x, v)[ W(r, x, v; o o ) y -  W(v, x, v; @]2  
- -  ~ m  ' 

To get the last equality we have also used (5.32), (4.38), and Schwarz's 
inequality to prove that 

lim Em([M,(t)2--2At(t)M~(t)][Igi)=O 
m ~ 0  

will follow from (5.44)-(5.46) in a similar way as in Thus, (5.43) 
(5.34.)-(5.36). 

A P P E N D I X  

We shall prove 

P({B lim re,~= oo})=  1 (A.1) 

with vB=inf{t)O:lV(t)f>>.B} and va=inf{t>jO:d(X(t))<(5} we have 
r s ,~=rB/xr~ .  Since, for any t < r ~ ,  Tr(a(X(t))<<.const.(l+6 1) and 
(b(X(t), V(t), V(t)), where ( . , - )  denotes the scalar product in R 2, it 
follows (see, for example, ref. 7, Theorem 3, p. 33) that for any T <  +oo 

P ( { l i f n  z e <  r / x  r ~ } ) = 0  (A.2) 

Therefore it remains to prove that 

P({~im ~ % = ~ } )=  1 (A.3) 

Let/~y(x) = by(x, v)/v. We shall prove (A.3) under the hypotheses that 

fs d x / ~ y ( x )  = o o  
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sup by(x)/@y(X) >~ o~ for some c~ > 0 
x~>0 

Let (y(t), v(t); t > 0) be the process defined by the y component of the 
process (X(t), V(t); t >~ 0), i.e., (y(t), v(t); t >  0) is the process satisfying the 
following stochastic differential equations: 

dy(t) = v(t) dt 

dr(t) = -by(y( t) ,  v(t)) dt + tryy(y(t)) dw(t) (A.4) 

y(O)=X(O)y=yo, v(0)= V(O)y=Vo, (w(t);t/>0) standard Wiener process 

Define t=~(t)dsa2y(y(s)) ,  and let (z ( t ) ; t~O)  and (u( t ) ; t~O) be the 
following processes: 

Then 

u(t) 

~(t) 

= v(T(t)) 

__ ~y(T(t)) 
- - yo  dy by(y) 

= ds v(T(s)) by(y(T(s)))[Cr2y(y(T(s)))] 1 

= B(y(T(t))  

du( t ) = - d z (  t ) + dw( t ) 

dz(t) = u(t) by(y(T(t)))[a~y(y(T(t)))] -1 dt 

(A.5) 

F o r  

converges weakly as A ~ oo to a Brownian motion (#(t); t ~> 0). 
To prove this assertion, it is enough to show that for any e > 0 

lim P({ sup lu ( t ) l / x /A>e})=O 
A ~ o v  t~ [0, A] 

For this note that from (A.6) 

du(t) = -u ( t )  by(y(T(s)))[tr2yy(y(r(s)))] -1 dt + dw(t) 

and then observe 
routine arguments. 

(A.6) 

any A > 0, let (zA(t); t ~> 0) - (z(At)/x/--A; t >10); then, (zA(t); t/> 0) 

(A.7) 

that SUpx~>O {Sy(X)[~2yy(X)]-l}>~c~; (A.7) follows by 
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Next we shall prove that 

(i) T ( ~ ) =  lim ~ = ~  
3 ~ 0  

fo (ii) T -1 dSa2y[B-l(z(s))] -1 

converges in distribution as T ~  ~ to 

1 

a-l fo dsx(#(s)e(O, oo)) 

where a = limx_~ oo a~y(X). Note that 

T(/) = dSf f2y[B-I(z(s) )]  -1 

and by (i) 
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P({]im ~ %= ~ } ) = P ( { T ( ~ ) =  oo}) 

=P({fodS~,CB-~(z(,))l 1=oo})(A.S) 
Therefore (A.3) will follow from (i), (ii), and (A.8), since by the arcsine law 
(see ref. 8) 

({ }) lim l imsupP A -1 ds~2vy[B-l(z(s))] 1<8 

=lim~oP({~]dsz(#(s)e(0,  o o ) ) < a e } ) : 0  

Proof of (i). By (A.4') it is sufficient to show that 

P({f;  ds(~:y(y(s))< oo})=O (A.9) 

Let us assume that (A.9) does not hold; then there exists an a > 0 such that 
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and since M(t)=~odw(s)ayy(y(s)) is a martingale with (M)~=~ods 
a~y(y(s)), and l i m ~  M(t) exists on a set of positive measure. By (A.4), 

fy 
V(t) 

m ( o  = V(O + clx ~,(x) 
o 

and for all o3 

lim f y(o yo ' ~  ~o dx ~y(X)= - fo dx b~(x )= - o o  

Hence l im ,~Tv( t )=  +oe on the set on which l i m , ~ M ( t )  exists. This 
implies that there exists an e > 0  such that ~;_~dsv(s)>O, but this is 
impossible since ~;_~ ds v(s) = -d(y(z - a)) < 0. Thus, (A.9) holds. 

Proof of (ii). Note that B - I ( O )  - -  Yo and lira,4 ~ oo B - l ( A l / z z )  = + o o  

if z > 0 and 0 if z < 0; then we have that 

( @y(yo) -1 if z = 0  

~ lirn crZyy(X) -1--a if z > 0  (A.10) 
lira G 2 y [ B -  I ( A 1 / 2 z )  ] - I = 

A~oo k. -o+  " / x l i m  a { y ( x ) 1 : 0  if z < O  

Thus, (ii) will easily follow from (A.10) and the weak convergence of 
(zA(t); t > 0) to (#(t); t > 0) by observing that 

A 

A-'  fo ds Crayy[B-l(z(s))]-1= (Is aZyy[B-l(A'/ZzA(s))]-1 
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