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A Mechanical Model of Brownian Motion
in Half-Space

Paola Calderoni,' Detlef Diirr,? and Shigeo Kusuoka®
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We consider the motion of a heavy mass in an ideal gas in a semi-infinite
system, with elastic collisions at the boundary. The motion is determined by
elastic collisions. We prove in the Brownian motion limit the convergence of the
position and velocity process of the heavy particle to a diffusion process in
which velocity and position remain coupled.
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1. INTRODUCTION

We consider the motion of a massive particle (molecule) in an ideal gas of
identical point particles (atoms) in a semi-infinite d-dimensional space
(d=2), the boundary being a wall which elastically reflects all the particles.

We consider the system in the Brownian motion limit: The masses of
the atoms tend to zero, while the mass and the size of the molecule are kept
constant and the density p and the velocities v of the atoms are scaled like
P 1/\/n_1 and {Jv|> =~ l/ﬂ, with (- ) denoting the average. The position
and velocity of the molecule thus become a family of stochastic processes
(X,.(2), V,,(2), £ 20) on the space of the initial conditions of the ideal gas.

In ref. 1 it is shown that in the infinite system without the presence of
the wall, the position—velocity process of the molecule (X,,(1), V,.(¢); 1= 0)
converges in distribution to an Ornstein—Uhlenbeck process when m — 0.
The proof uses a natural Markov approximation of the mechanical motion,
based on the fact that only “fast” atoms (va 1/\/;11-) have an effect on the
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motion of the molecule, but recollisions with fast atoms do not occur when
m tends to zero.

Due to the presence of the wall, it is clear that fast atoms also recollide
with the molecule and an entirely different strategy of proof had to be
adopted to tackle the problem.

Before entering a more detailed description of this, we note that a fast
atom spends, from its first until the last recollision, a time of roughly \/;
with the molecule. Since by the laws of elastic collisions we have for the
change of velocities

AV = mw, Advr —2v

we may expect that the effect of recollisions with a single atom does not
spread over a macroscopic time. Given the results of ref. 1, we may there-
fore expect in the semi-infinite system the convergence of the process
(X,.(1), V,,(2); t=0) as m — 0 toward a diffusion process in which position
and velocity are coupled, since the recollisions depend on the distance of
the molecule to the wall. We shall show that this is indeed the case.

The convergence result is proved via relative compactness of the family
of measures induced by (X,,(¢), V,.(¢); t = 0) on paths space and by iden-
tifying a unique limit point by the martingale characterization of diffusion
processes.'® This is a very natural procedure, noting the following. Let i=
l,.., N(z) denote a time-ordered labeling of the different atoms which
collide with the molecule until time ¢. Then we may write

N(E)
Vm(t) - V(O) = Z fm(via Xis ti; t)

i=1
with f, (v, x;, t;; t} denoting the total effect on the molecule during [0, ¢]
of atom i, colliding first at ¢, with precollision velocity v, and colliding at
the place x; on the surface S of the molecule. (Note that f,, contains the
effect of all recollisions of atom i.)

Using the notation of point processes, .., counting measures, we may

write the sum as

Vo)) = Vn0)= | [ N, do, di) f (e, v, 1) (1.1)

with N,,(dt, dv, dx) denoting a point process on R?x S, which is very
roughly speaking like a Poisson process with rate

R, ~ E(N,,(dt. dv, dx))}/V,.(s<1))
~p,, lv—V, (1) h,(v) dvdx dz (1.2)
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h,(v} is the velocity distribution of the ideal gas, and E(-/-) denotes the
conditional expectation. Thus, N,,— R,, is a martingale difference, since by
definition its conditional expectation is zero. Hence, we might think of the
R, integral of f,, as representing “the generator L,, of the process V,,,
acting on V,” ie., we are close to writing, using (1.1) and (1.2),

E(Vm(t)— Vm(s)-f'Lm Vm(u)du/Vm(r<s)> <0 (1.3)

If L,, is close to a generator of a diffusion, we formulate indeed a mar-
tingale characterization (very roughly speaking). This is the key observa-
tion and leading idea. As usual in stochastic integrals like (1.1), to proceed
to (1.3) we need the function f, (v, x, 7; t) to be nonanticipating, i.e., not
depending on the future of V,,(¢), > 1. But this is of course not our case,
due to the recollisions. The work is then to approximate the effect of colli-
sions of one atom by a function depending only on the collision parameters
of the atom’s first collision, ie., f,,(v, x, 7; 1) by f,.(v, x, t), which is clearly
possible by the first observation on the recollision time.

As usual in these proofs, we introduce a stopping time, which helps to
control error terms and which may be removed for the limit process. Here
we stop the process when the molecule becomes too fast or when the
molecule comes too close to the wall. In fact, in the limit process the
molecule never reaches the wall, i.e., the drift and the diffusion coefficients
become likewise singular at the wall.

The molecule is represented by a cube of fixed orientation with one
face parallel to the wall. This choice removes serious complications due to
the geometry of more general shapes. One should note, however, that our
method makes it possible in principle to handle also the case of two or
more molecules of convex shapes, which is the physically most interesting
case.

The results are described in detail in the next section. We state them
for two and three dimensions. The result in three dimensions is less restric-
tive on the velocity distribution of the ideal gas. The proof is explicitly writ-
ten out for the two-dimensional case, mainly for ease of notation and for
a better presentation of the probabilistic method involved. In Section 3 we
extract the relevant details of the point process. Bounds on the recollisions
and tightness of the family of induced measures are discussed in Section 4.
The Martingale problem is then considered in Section 5. We close with an
Appendix, where we show that the molecule in the limit process never
reaches the wall.
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2. THE MODEL AND RESULTS

We first introduce the heat bath. Let I'=(R*"!xR*)x R%, d=2,3,
be the one-particle phase space, B(I) its Borel o-algebra, on which we
define the measure

Dy =P dghy(v)dv, (g v)el (21)

with p,,=m p, p>0, velocity distribution density A,,(v) =m¥*h(m*?v),
and dg dv the Lebesgue measure on R%.

We define the Poisson field (2, F, P,,) built on (I, B, dv,,) as follows:
for any B, B,,.., B, disjoint sets of B(I"), let

N(B;) = {the number of particles with coordinates (g, v)€ B;}

Then for any k4, k,,..., k, positive integers

P, ({we® N(B) =k, i=1,.sn})= ] exp[—vn(B)] V"‘E{B"‘)ki

(2.2)
where w=(gq,, w;);c» represents an initial configuration of the bath
particles (atoms).

The molecule is taken as a d-dimensional cube of side L and mass M.
We place the molecule into the bath, away from the wall and one face
parallel to the wall, removing from the initial configuration w all those
particles that are in the closed region to be occupied by the molecule. The
Poisson system obtained in this way is again denoted by (2, F, P,,).

We now define the dynamics. The orientation of the molecule is fixed
forever (infinite moment of inertia). The atoms interact with the molecule
and the wall by elastic collisions. In between collisions the molecule and
the atoms move freely. To describe the collision between an atom with
velocity v and the molecule with velocity V, let v,=(e,-v)e,, V,=
(e,-V)e,, and v,=v—v,, V,=V—V,, where e, denotes the outgoing
orthonormal vector of the surface hit by the atom. For the postcollision
velocities v’ = (v, v)) and V'=(V,, V) we then have that

I I
U, =1y, sz V,

Dlz_(l_a)vn+(2_a) Vns Vr’lz(l_a)Vn_i—avn

n

(2.3)

where o = 2m/(M + m).

There are collision situations, however, which cannot be dissolved
mechanically. An atom may collide with an edge of the molecule, two or
more atoms may collide simultaneously with the molecule, and also
infinitely many collisions within a finite amount of time may occur. For
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given initial value (X, V) for the molecule, we collect all w € Q for which
these bad events occur in Q,(X,, V) < 2 and for we Q,(X,, V,) we simply
place the trajectory of the molecule in a cementery 4.

For weQ\Q,(X,,V,) the position—velocity process (X,,V, )=
(X,.(6), V,.(t); t 20) of the molecule is now defined as follows: the molecule
will move freely according to its initial velocity until the time 7, of its first
collision with an atom if 7, <tf¥ =inf{s>=0: d(X,+ V1) =0}, where d(X)
denotes the minimal distance of the molecule from the wall, when its center
is placed at the point X.

If 1, = 1§, we shall stop the motion at time r=1§; ie, (V,(t);t=20)=
(Ve A tf); 12 0).

If ;< 1§, the velocity of the molecule and of the colliding atom will
change according to (2.3). Afterward the molecule will move with constant
velocity V (t;)}= Vg until the time 7, of the next collision if 7, <t§=
inf{t > t,:d(X,.(t,) + V,(t{ Wt —1,) =0}, where X, (t;)=X,+ Vot,;
otherwise the motion is stopped at time 1, etc.

Thus, we otain (V,(1);1=0) for all we Q\Q,(X,, V,) and X, (1)=
fodu V,(u).

For we Q,(X,, Vy) we set, for all 1, V(1) =4 and X, (1) = 4.

One may follow the one-dimensional analysis of Holley" to see that
in our case V,(-,-) is a function from [0, 0)xQ2 to RYu {4} right
continuous in ¢ and for any fixed f measurable in w. Hence, also the
process (X,,(¢), V,.(t); t =0) is measurable in w for any fixed z.

Following the arguments given in refs. 1 and 2, one can easily show
that for almost all (X,, V,) and for m>=0

P,(2,(Xo, V) =0 (24)

provided A(v) has a finite fourth moment.

We may realize the process (X,,V,) on the path space
D([0, c0)) x D([0, c0)) endowed with the Shorohod topology with induced
measure P,,. Thus, we may consider the weak convergence of the family of
processes (X,,, V.,.)m50 o1 the path space, i.e., the weak convergence of the
measures P, .

In ref. 1, it is shown that the motion of the molecule in the system
without wall converges as m — 0 to an Ornstein-Uhlenbeck process. One
might therefore, think, that the limit motion now becomes an Ornstein—
Uhlenbeck process with reflection at the wall. This is not the case. More
careful thought shows that the drift and the diffusion coefficient of the
velocity process in the limit will depend on the distance of the molecule
from the wall. In fact, we shall show that in the limit the molecule will
never reach the wall. When the molecule is near the wall, most collisions
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on the side facing the wall will be recollisions and thus the statistical effect
due to atoms which did not collide before is changed.

Indeed, rough estimates show that the diffusion coefficient may be
obtained by computing the effect of recolliding atoms assuming the
molecule does not move in between recollisions. Effects due to the change
of position and velocity of the molecule enter the drift coefficient only.

In the case of thermal equilibrium, ie., if the velocity distribution
density for the atoms and for the molecule are Maxwellian at the same
temperature, one knows by the Einstein relation that the drift is propor-
tional to the diffusion. This provides a heuristic checking of our theorem.

To prove the convergence result, we need stronger conditions on the
velocity distribution density A(v). Let (e;);~, . , be an orthonormal basis
with e, the outward normal of the wall; then we assume that

[[oilo) hoydo=0  for i=1,.,.d (2.5)

” [lvgl/max(|v,), i<d—1)]' " |v,| h(v) dv < oo for some A>0
(2.6)
b, ;= ” [v,)% h(v) dv < o0 for i<d and k<max{5, (4—31)/A+1}
(2.7)
Theorem 2.1. Suppose that (2.5)-(2.7) hold. Let o(X) be a
diagonal matrix with elements

0.(X)y=(@4Lp®; ;M ) =g, for i=1,.,d-1

04alX)=0, [1 +(@5.0) 7 [ h) v oi2Fi(x, v))]m

vy >0

and let b(X, V) e RY with components
bi(X, V)= = (4Lp®, M~ V,=b,V, for i=1,.d—1
ba(X, V):bd[1 +o.4 [

vg>0

J
do h(v) = vRFOI(Y, v))] v,

with
L |v,l
2d(x) max(|v)};i<d—1)

Foy=n~" [ av20y)=n"' [ dy[pIy+11  for d=2

n(x, v)=

n n
Fp=n"[" @[ dlynzllyaz+1]  for d=3
n— n—
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where [(-)] denotes the integer part of (-). Then the stochastic differential
equation

dX(t)=V(¢t) dt
dvV(e)= —b(X(t), V(2)) dt + o(X (1)) dW(1) (2.8)
X0)=X,, V(O)=V,
with W(t) d-dimensional Brownian motion, defines uniquely a process
(X(2), V(2); £ 20) for all (X, Vy), d(Xy)>0, and for almost all (X,, Vy),

d(X,) >0, the family of processes (X,,(1), V..(t); t =0) converges weakly as
m =0 to (X(1), V(1);t=0).

Remarks. 1. Note that in the Maxwellian case, ie., h(v)=

(2rB 1% exp(— B |v|?/2), (2.6) for d =3 holds for any 0 < /. < 1 but it does
not hold for d=2.

2. For d=3 and h(v) Maxwellian of parameter f, the process
(V(z), t =2 0) has a unique invariant measure
p(V)dV=(2nf') ¥ exp(— B 1V1%/2) AV
with
Bu=2b/Mc*=2® &5 =p (2.9)

To check (2.9), we need only show that

;) Hv . h(v) dv v} 2F(n(X, v)) =P, J.J

o) do == [W3F(X, )]
vg> 0 Vg4
and this follows easily by integration by parts.

The last argument shows that we need only that 4(v) is a product of
a Maxwellian in the d direction and an arbitrary function [satisfying
{2.5)—(2.7)] for the existence of a stationary Maxwellian distribution with
different f,, in the different directions. The theorem also asserts that the
limit process is well defined for all times; this means that d(X(¢)) will never
be zero. We prove this in the Appendix.

Hence, for (f;, /5)e D([0, «©))x D([0, o)) and B, § >0 let

15,6(/1, [2)=nf{1 > 0: d(f1(1)) <0 or | f5(2)| = B} (2.10)
Then we have that for any 1> 0
lim 0P({rB,(;(X, Vy<t})=0 (2.11)

B— 00,6 —

822/55/3-4-12
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where P is the probability law induced by the process (X(¢), F(¢); 1=0).
Therefore, by standard arguments (see, for example, Lemma 11.1.1, ref. 6)
we need only show the convergence part of Theorem 2.1 for PZ°, the
probability law induced by the stopped process (X,(¢), ¥V, (t); t=0), to
P%° the probability law induced by (X(z), V(¢); t>0) the stopped limit
process, where

T (1)=X,+ f du ¥, (u)
0 (2.12)
I7rm(l‘) - Vm(t A TB,(S(Xms Vm))

The rest of the paper will be consumed by the proof of the convergence. We
shall give the proof of the result only for d=2 and assuming that

h(v)=0 forall v st |v,|<v, forsomev>0 (2.7)

so that (2.6) is triviaily satisfied. This way we avoid pure technicalities and
heavy notations due to higher dimensionality.
In the next section we analyze the collision process in more detail

3. PRELIMINARIES

Let 0 =7 w d, be the boundaries of the molecule, placed at the origin,
with d, denoting the side facing the wall, which we assume to coincide with
the x axis. For 4 =0 x R* let B(A) be the g-algebra of the Borel sets of A.
For given w e 2\ Q,(X,, V,) we define collision times

©g;, w) =1nf{t>0: [X,(¢)— (g, +w;t)] €0} (3.1)
and collision points
x{t(qi w))} = X, ((qi, w))) — (g, + wit(g;, w,)) (3.2)

and let {t,},.y, to=0, denotes the natural ordering of the collision times.
If t;=1(q;, w;), we denote now by (x,, v;) the pair (x{z;}, w;}. Finally, we
set, for any B, 6 >0,

T5.5=Tp5(Xpms Vi) =inf{1>0: d(X,,(t)) <6 or |V,(t)| =B} (3.3)

For any >0 and A4 € B(A) we define the point process

Nt A)= T 5lt;<t A tas) d(x,v)ed)= [ dN(z xv) (34)
Ov4

Jj=1
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Defining G,=0(N(s, 4);0<s<t, A€ B(A)), the process (N(t, A), 1>=0)
can be decomposed as N(t, A)= M(1, A} + A(1, A), where M(1, 4) is a
(P,., G,)-martingale and A(z, A) is a predictable increasing process.”’ We
shall show below that

A(:,A):foduz(u,A), M, A)=0  for u>t,,  (3.5)

where A(u, A) roughly represents the collision rate, which depends of
course on the process (X,,(¢), V,,(t); £ =0).

Due to the presence of the wall, which leads to recollisions, we are not
able to compute the collision rate explicitly. But we have that for any
A=A, x4, c{(x,v)ed:|v,|>2B} and 0<u<1y;

Mo (0 x Ao =[] dohy@pp | dxlo=Pp@al  (36)

edn Ay
M (A0 0) x A2 [ doh() o [ e (0= 7, (1))
X y(x<RAX () tgv™) A L) (3.7)

and setting o, =L(vm ">—B)"', 1,(u, v)=2d(X,(u))(|v,| +B)"", we
have

Mu, (A, N8y x 4,)

U0, [ doh(©)pn| dx 0= 7))y

edm A

X 1(x <2d(X,,(u)) tgvt A L)

talu<a,) [ dvn,w)p, {x(u@y(u’ D>

Fru<n@wo) [ dx (= )

X x(x <2d(X,,(u)) tgvt A L)} (3.8)

where (0 —V,(4)) ey = (v — V(1)) €y, With €.~ the outgoing ortho-
normal vector of @ at the point x, and

tgv* = (vl + B)(Jv,| — B)
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We remark that for u >0, all the atoms which at time zero were in the
region between the molecule and the wall are no longer there at time u.

Proof of (3.5). For any A€ B(A) define N'(t, A)=N(t, A) Ann=
N(t A t,, A); we shall prove that for any n=1 and m>0
IANIygANTBS

A"(t, A) :fo du Mu, A)

where A"(t, 4) is the predictable increasing process associated with
N"(1, A). Hence, (3.5) will follow upon taking the limit # — co. For any
0<s<t and >0 let {u;},_,, be a sequence of times, uy=s, u,=1,
sup{u,,, —u; j20} ==

Setting A"N(j, A)= N"(u;, A)— N"(u;_, A), we have that

E,(N"(t, A)— N"(s, 4)|G,)
=E,((N"(1, 4) = N"(s, 4)) x(VJ: AN"(j, A)=1)|G,)
+E,((N"(1, 4) = N"(s, 4)) (3j: AN"(), 4)>1)|G,)  (39)
where E,, denotes the expectation with respect to P,,.

Now, the second term on the rhs of (3.9) tends to zero as ¢—0
because it is bounded by nP,({3j: AN"(j, A) > 1}|G,), which tends to zero
as ¢ — 0, since the probability of having a multiple collision during [s, 7]
is zero.

For the first term on the rhs of (3.9) let us introduce for j=1 the
following event:

C;= {during (u;_,, u,] the molecule does not collide with particles which
collided first during (0, u; ]} N {4AN"(j, 4)=1}
Note that P, ({3j: AN"(j, A)=1} n C§|G,) converges to zero as ¢—0,
because we may again reduce it to the probability of having a multiple

collision during [s, T].
Furthermore, setting, for j> 1,

D(uj71): {(‘]a w)e I (g, W)<”j-1 ALy A 73,5}

and

~

D(u; ,,A)={{g,w)elinf{s>u; | A1,
(‘Ym(ujfl)+ Vm(uj—l)(s_uj—l)_(q"-WS))EAI}

SUNt, ANTps, WEA,}
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we have that
{AN"(j, A)=1} " C;={N(D(u;_, A\D(u;_;))=1}

and hence by the strong Markov property of the Poisson field representing
the bath we have that

P, ({4N"(j, )=1} n C,|G,)
=E,(v.(D(,_\, A\D(u;_))| G,) + ole) (3.10)
Since
E,(v(D(u;_\, AND(;_1))|G,)
<E, (E,(v.({(g w)elweAd,,

g=x+ W=V, (u;_ )= 2w =V, (t1;_ ))nx) €ncxy) u fOr some x€ 4,
) Gs)

G.)

and 0<u<u; At, ATgs—U_ A1, ATp51)|G

uj—1

we obtain from (3.10) that

lim Em<[N"(t,A)—N”(s,A)]X ( [1 (aN"(j, )= 1} mcj)

@;ZE Q[wh pn| A5 0=Vl D)o

)

A In A TBG
~E. (] aul] @by o, [ dxlo= V)
2 xe Ay

SAInATBS

XUy Aty ATgs—U_1 AL, ATg;)

3

(3.11)

and (3.11) implies (3.5).

To prove (3.6)-(3.8), we first observe that if 4, 3, =, the equal
sign holds in (3.11) [thus yielding (3.6)]; hence, we need only consider
collisions in d,. For those, note that if an atom with velocity v = (vy,v,)
collides at time #, then, if it collided before with the wall, it did so at tlme
i — d(%,.(@)/lv,]. i

Moreover, if t* denotes the time [smaller than i — d(X, (i) |v,1] at
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which the molecule and the atom were at the same distance from the wall,
then

j du [(v— V(1)) =x (3.12)

and

J*d” Voalu), =2d(X, (1)) —v,(ti—1*) (3.13)
Using this in the rhs of (3.10) and conditioning as before yields (3.7) and
(38)foruzog,,.

To prove (3.8) for u<a,,, note that if 7 (u, v) >u, then the colliding
atom was at time zero in the region 0< y <d(X,,(0)); thus, the collision
may happen at any point xe d,. Therefore, (3.8) will follow again from
(3.10)-(3.12).

Finally, we note that for any >0 one may obtain from (3.11) the
following “basic” upper bound:

Mo V<[] doha@)pn|  dri@= Vo Dl (B14)

xe Ay

Notations. For any function H: [0, o) x A4 —» RY and A& B(A) we
shall denote

f j dN(z, x, v) H(t, x, v)= Y, H(t;, x;,v)) x(; <1, (x;, v,)ed)  (3.15)
094

Jj=z=1

It
E, (j du | A, d, do) | Hu, x, v)]) <
(4] A

where A(u, dx, dv) denotes the random measure f 4 A, dx, dv) = A(u, A), we
define

M1, A) = L L dAN(z, x, v) H(t, X, v) — L du L Au, dx, dv) H(w, x, )
(3.16)

and if (H(t, x, v); t 20) is a G,-predictable process, then (M 4(¢, 4); 1= 0) is
a (P,,, G,)-martingale.®
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4. TIGHTNESS

We provide first bounds for the number of recollisions that a given

atom may have with the molecule. Let {#;,}is0, 0=, Lx<l, 141, be

the sequence of the recollision times of the jth atom (i.e., of the atom that
collided first at time ¢;) and for any ¢ >0 let

k(s )_{sup{k>0 <ty i 1<y
j’

4.1
il 1,>1 (4.1)

Furthermore, v, (v,7) denotes the pre- (post-) collision velocity of the jth
atom at time 7, , and d(z, ) = d(X,,.(1; ).

For any u<u’, we set

R'Puu)={jiuntgs<t;<u’ Antgsand [(v7),]>(<)2B} (4.2)

Lemma 4.1. For any 0<1<71,;, je R'(0,7), and x,€4,

k=(1, )<k(t, )y<k™ (1, 1)

— (vjv—)y L_xj C‘1 :l
k . = 4 _
@) [2d(z,>{|<v;)xr+3“’ ’f)}(l |(v-)1>

K, 1) = [(Zl;gt)) {vai;fig ma=f(ig C—Q) ]

with C,, C, positive constants.

where

Proof. Set s,=t;,—t , ;. We have that

k(t,1)

L—x;

S(t—t)n——0 4
T 43)

and if (1 —1,)> (L — x,)/(|(2,),] + B), then
k(tj,1) L~Xj ,
R AR (439

and

At 1)~ Bs <d(t; ) <d(t; )+ Bs, (4.4)

Let, for the moment, v*= ()" and dy=d(t,,) and set §,=
—di_(v* ")~ [note that d,_ (v*~')~! is the time needed by the jth
atom to reach the wall after the (k — 1)th recollision]. Then

| Pty v, = e~ 051, 5,
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and therefore
2d, ([~(0*7"), + Bl <8, €2d [ (F 1), —B]7 (45)
and by (4.4)

(v* "), +3B
Y, +B

(vk—l)y_B

dp_ 1 <d < F—d,_
k—1 k (Ukvl)y—}-B k—1

(4.6)

y

Denoting a, = —2B/[(v"),+ B]1~ ' for n>1 and aq= —2B/[(v; ), + B], by
(4.5) and (4.6), then it follows easily that

0 2d(t,) M50 2d(1,) k2
Ky s——-—i———-}-[ J ap . 1+an] k(tat 22)
kZ=:1 k (vf )y _R k§=:2 2B k-1 nl;[() ( ) |l 7 )

k(1,0) N 2d(t]) [k(’j,t) Zd(tj) k—2

kgl Sk /m kgz —(Uk*l)y'i'B,,l;[O (1 +an)] x(k(t;, 1) =2)

(4.7)

By (2.3) it is easy to check that
{(v;),—[alv;, ), + 2Bk <(1—a)* (v; ), —2kB
< —(W),<(l—a)*(v;),+2Bk  (48)

For the upper bound note that (4.7) yields

WO KOO ) MO d(y)
> 8L C2d) G hs
L,z X ("), + B [ z ) aj] 1(k(t, 1) >2)

k=0 k=1 —(Uk)y+Bj=0

By (4.8) we have that

MO Dd(r) Koot 2d(1))
o —(),+BT Z, (v;),+(Qk+1)B
2%}—(;{:—3/((11-,t){l—@j_f}—+B[k(tj,t)~l]}
(4.9)
and for (1), 1) > 2,

2Bd(1))

=T, 3 57 K Dk, 01 (410)
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From (4.9) and (4.10) we obtain that

k(¢ 1)
J 2d(¢;
T s> (1))

2B
Zo mk(tj, t)[l——_—Bk(tj, t)} (4.11)

(Uj )y -

Then the upper bound will easily follow from the right inequality of (4.3)
and (4.11).

Next we shall prove the lower bound. By (4.8) and the upper bound
for k(z,, t) we have that a;, >0 and

K0 =1 —2B a(v;, ), +28B
a<—————lg| 1 ——LL———[(z,, ]
L S )+2Bg[ w),—8 "
Hence
k(t,1) k(tj,t)— 1
/ 2d(t)) 2d(t-)[ s ]
€ ——+— 4 —1 l4a)~(1+a
kgl k (U] )y_ 2B jl;Io ( j) ( 0)
2d(tj) k(1) — 1
=7 14+a)—
-5 [ ,-Uo (14a)-1
d(t) k(tj,0) — 1
< B] [exp( z aj>—1]
=0
d([) (X(U»‘) +2B ~ZB/[a(vj’)y+2B]
< J 1___1Y—k " _ .
B {[ (07 ),—B (t; l):| 1} (4.12)
Setting
:w and C:M—
(v; ),—B a(v;,),+2B

then a>0 and (1—ak) ‘=9 —1<(1—c)ak(l —ak)~?~9; therefore,
from (4.12) we obtain that

k(4,1) 2d( )

Z Sk\

) k( O —ak(t;, 1)1~ (4.13)

Let k&, be the root of y(x)=0, where

y(x)=x-b(1 —ax)?, b=w|:(t L) A —L—x———
) 1(v; )«

D -3 ] (4.14)

Then by the inequalities (4.3), (4.3"), and (4.13) we obtain that k(z,, t) > k,.
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Theorem 4.1. The family of processes (V,,(¢); t > 0) is tight.

Proof. To simplify the notation, we set V= V(1) for all k=1
and V=V, (7). Then for all 5, 1 (0 <s5<1), we can write
k(4. 1) k(t,1)

Vuy= % 3 Vh~Vid+ Y Y (Vi=V) (415)

je RY(0,0) k=0 je R0,1) k=0

By the collision law (2.3) we have that for all 0<A<k(t;, £ A 155)
V‘Tk —Vix= OC(U]T/C - V]Tk)

= (v, ), — (V) — 12— )

x kil (M—a) (VigoimOntall = (1= 1), (4.16)
i=0,kz1

and we set
V(1) = y1(2) + ya(2) + ps(2) (4.17)
where
=Y alk(ry, ) +11v; ),
je RYO, )

k(tj,r)

k~1
n=— ¥ Y [a(V;k),,Jra(zw) 5 (1~a)f(Vjtkf1>n]

jeRYO,1) k=0 i=0,kz1
k{4, 8)
ys()= Y [A—aff0—T4ak(t, )1, )+ Y X (Vie—=Viin
je RYO,1) jeRY0,1) k=0

(4.18)

Then the tightness of the process (¥,,(¢); 1> 0) follows once we show that
the following hold (see ref. 4, Proposition 5.7):

(i) For each n, n=1, 2, there exist f, y, ¢>0 and J,, — 0 such that
for all |t —s|>6,,, s<I<T< 40,

EZ(y, (0) = ya)P)<cle—s'*7

(i) Foralle>0and T< +o0

lim P2 sup |[yi(0) = »i()]+ D)= »0)]1 > ) =0

OQws<tgT
|t —s| <O

(iii) Foralleand I'< +o0

lim P2°({ sup |ys(1)l>2})=0

0<t<T

where EZ? denotes the expectation with respect to P22,
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Proof of (i). From now on we shall write P, E,, instead of P2¢,
EZ° respectively. First we shall prove (i) for (y,(¢);#>0) with f=2,
8,=m’ 1>0>1/2, and y=06""~1. Noting that k(z,, 1) =k(,, s) for 1,<s
and |t,—s| >0, [0, =L(vm™">—B)~'] and observing the bound on ¥,

we obtain that
E,.(|y2(2) — yas)|?)

<E,, (U le AN(z, x, v) a(k(z, 1)+ 1) BD

TEn (U [ an, x,v) alk(z, 1)+ 12 BD (4.19)
(s~am)n O 1

R

where we used the point measure dN(t, x, v) to express the sum in (4.18)
[cf. (3.4) and (3.14)].

The upper bound for k*(z, ¢) given in Lemma 4.1 and the decomposi-
tion (3.16) yield

> <Ur Ll dN(z, x, v) alk(t, 1)+ 1)* B]2>

+2F,, <U du [ M, dox, dv) ak* (u, £) +1)? BD

SATBs

+2E,, ({Jr le [dN(z, x, v) — dr A(t, dx, dv)] alk " (7, t) + 1)? B}2>
(4.20)

Using the basic estimate (3.14), it is easy to show that

En (U M J i, dx, o)t (u, 1)+ 1)? B]Z) SCy(t—s) (421

§Aps

For the second term on the rhs of (4.20) we observe that k¥ (t,1) is a
predictable function and therefore we can use the quadratic variation to
estimate as follows:

E, ({Jl Ll [dN(t, x, v) — dt Az, dx, dv) ] alk T (1, 1) + 1)? BF)

-E, (f dqu(u, dx, dv)[atk ™ (u, 1)+ 1) B]2>

KA ¥

< Com(t—s) < Cy(t —5)? (4.22)
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Thus, from (4.20)-(4.22) we obtain

E, (U le dN(z, x, v) alk(z, 1)+ 1)? B]2> <Cs(t—s)?  (423)

In a similar fashion we obtain that
Ky 2
E, (U dN(z, x, v) alk(z, 1)+ 1) B] ) <Cool  (4.24)
(s—apm) A0 YR!

Next we prove (i) for (y,(¢);7>0) and we shall do so for 4>8>2,
3,,=m® 1/2<0<p/4, and y = p/46 — 1.
Denote by ¢(1, x, v; 1, s) the function
0 if t>1¢
o(t, x, 058, 5) =< alk (7, 1) + 1) v, if tz12s (4.25)
alk (1, 1) =k~ (1,5)) V) if t7<s
We have that

j j dN(z, x, ) olk(z, 1)+ 1) )

t
Em<
s YR

+j j dN(t, x, v) alk(z, 1) —k(z, 5)) v,

)

tATBS ﬂ
<2°E,, ( J du f Au, dx, dv) o(u, x, v; t, 8) x(|v,)| > 2B) )
0
14
+2ﬂEm< J J {dN(1, x, v) —dt Az, dx, dv) y(t <Tps)}
0 YR

x (1, x, 05 1, 5)

ﬁ) (4.26)

using the decomposition of dN(z, x, v) into its systematic and martingale
parts [cf. (3.16)]. We first handle the systematic part. Using (3.7) and (3.8),
we shall show that
I ATRS§ ﬂ
B () [ 2 s ) 0%, 551,99 o 280 )
0

<Cy(lt—sl+a,) (4.27)

We establish (4.27) for ¢, s =20, and ¢, s < 20,, separately. Then (4.27) for
s< 20,, <t will follow by observing that
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We start with ¢, s> 20,,; by (3.6) and (3.8) we get

[ " [ Ao, d, o) 9(a0, %, 3 1,5) 1(1,00] > 23))
4]

<

[ [ do ho0) pral 10 = V)il v,

+

J‘ AT du '” dv /’lm(U) pmocL k(l)— Vm(u))y| v,
SATBs ns —2B

+ Jl Y ” . av h,,(v) p,(v— V()

SATBS vy =

xj dx y(x<2d(u)tgv® A L)olu, x,v; 1, 5)
xed

(4.28)

By symmetry of A(-) [cf. (2.5)] we easily get

<Cqlt—s|  (4.29)

[, e[ o) pooL [0Vl v,

which takes care of the first term on the rhs of (4.28).
For the second term we show that

[ “duj Cdxy(x <2d(uw) tg vt A L) o, X, 03 1, 5)

0

=oLlv,(t ATgs—5ATgs)+0{m7v, +m*2)o,+(t—s)]1} (4.30)

Then (4.27) for ¢, s > 20,, will follow easily from (4.21) and (4.30).
For simplicity let us assume that 1 <1, ;. We show the essential steps.
Set

Ly, G\, (=9, C,
“(”’“)=2d(u)<|vx|—3)<1+v_y>’ b 0) =" (”v)

y

and consider the change of variables
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Furthermore, observe that

¢(u,x,v;l,s)=¢(u,x, U;OO7S)E¢OO for t—u>

L—x
v.— B

x

¢(u, x,v;2,5)=0 for s—u>=

and that

|d(u)/d(u')— 1| < BS o),
We express equalities to the order given in (4.30) by = .The right-hand side
of (4.30) is split into

ft du Leal dx ¢

0

:LI du Leal dx xo +£t du Leal dx (d—d )1 x (t—u<vl;:);>

0

+ JS du Leal dx y¢

which we find, observing (4.25) and Lemma 4.1,

t L a(u,v)
ijduavyj dx [x+1]
s a(u, v) e —1)vo
OCLZU a(t,v) x A b(t,v)
X L d. d —
T (T B e oo™y (=T
O(szy a(s,v) x n
d d b(u, v)+ —
a(s, v)* (o] — B) Yas.o)— 1) v 0 xJ;) u (L A (bl v) +u)] = [ul)
(4.31)
where b(-, v) is the function » under the transformation u — .
The first term on the right is easily computed:
' a(u,v)
[ duoLv,a@ )" | dx [x+1]=alo(t—s) (432)
s (a(u,v)—1)v O
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For the next terms observe that for t —s>0,,, b(t) > a(t) and b > a(s, v), so
that both terms transform to

=B {j” dx d(1)? j du ([u] - [x])
( 0

Uy a(t,p)—1)v O

_j"“’"’ dx d(s)? Lx du ([u] — {x])} (4.33)

{a(s,v)~1) v O

Now, a(t,v)~1/d(t) and |(d/dt)[1/d(t)]] <6 *B, so the mean value
theorem gives [(v, — B) ™' ~m'?]
(4.33) < Com'p(t — 5)

as desired.
For t—s<g,, the third term on the right of (4.31) may be brought
into the form

L2 a(s,v) b(s,v) +x b(s,v)
ol {f dxf dulxnu]— J du [u]}
( x

a(s, 0)* (v, — B) s,y -1y v 0

which to the order of interest cancels the second term of (4.31).
Now we shall deal with ¢, s <20,,. By (3.6) and (3.8) we have

“ . a’uf Au, dx, dv) o(u, x, v; ¢, 5)
0 R!

<[ ] do but®) prual 10— v, (w)), | 0l
+ J::::; du vag . v hy(0) paL [(0—V,(w),l v,

+j’“‘”duﬂ @ (V) P [ (0= V(1))

X {X(u <1,(u, v)) dx o(u, x, v; 1, 8)+ y(u= 1,(u, v))

xea,
|

x€d;

dx y(x<2d(u)tgv* A L) p(u, x, v; 1, s)} (4.34)

As before, we need only compute the second integral of the second term on
the rhs of (4.34). For the sake of simplicity, we shall again assume 7 <t 8.6
then, since

o(u, x,v; t, )= @(u, x, v; 1, 0) — @(u, x, v; 5, 0)



670 Calderoni et al.

the same changes of variables used to obtain (4.31) leads to

Jor du {x(u <7,(u, v)) J

X e

dx o(u, x, v; t, 5)
81

+p(u<,(u, U))J dx y(x <2d(u)tgv* A L) p(u, x, v; ¢, s)}

x€d

t/ty(1,v)

a(t,v)
— v, 7,1, v)* D, {f du jo dx ([x A ul+1)

(t/tp(t,0) — 1) v O
(t/ty(t,0) — 1) v O a(t,v)
+] du | dx ([x A ul+1)
0 {a(z,v)—1)v O

s/Ty(s,0) a(s,v)
|

+av,T,(s,v)’ v, {J dx ([x Aul+1)

(s/1y{s,v)—1) v O

(s/1y(s,0) — 1) v O a(s,v)
+J du[ dx([x/\u]—f—l)}

4] {a(s,v)—1)v O

0

+0(m*v,(t +5)) + o(a,003)
=av, L(t—5)+ O(m>?v (t + 5) + m**v}) (4.35)

To get the last equality, we have used

a

0

=Lbdufoadx [x/\u]—j(bﬁl)voduf(:a_l)vgdx [xAul

0
=(ab+1—a-b)y(b>1,a>1)

Thus, (4.27) for ¢, s< 20, follows easily from (4.34) and (4.35).
Let now consider the martingale part. Once we show that

2

(4.27) and (4.36) will imply (i) with y= /40 —1. We observe that

)

< Cyol(t—s)+0,)" (4.36)

(] [aN(z, x, 0)—do Az, dv, do) 1(s < 25,)] (5, %, 031, 5)
0 YR

Muw=M, (u)= J:J [dN(z, x, v) —dt Mz, dx, dv) x(1 < 155)]

X (P(Ta X, U; ta S) X(Iun(x)l 2ZB)

is a uniformly integrable (P,,, G,)-martingale with M(0)=0; then, by the
Burkholder-Davis—Gundy inequality we obtain that
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! B/2
(M0 < @) B (| [ Vs 500 <0 | )
ez {ea([['[ v rneru<nn])

+E, (UO JRI dN(u, x, ) ¢2X(u<z“)]m)} (4.37)

To estimate the right-hand side of (4.37), we may now use Holder’s
inequality twice, choosing p = p’$/2, and obtain

E,(IM(1)") < (4 /2 )’ {Em<N1(s, (ype2ayvi

[ At qi/p
x Em< j duj s dx, dv) §7y(u <15 5) )
|~ R! =

+ E,(N(s, s — 0,970V

X Em<_rduf A, dx, dv)¢2px(u<r3,5)_1/p>} (4.38)

Then, using (4.25) and (3.14) and observing that ¢ — s> m, we obtain,
for p>2,

E,(IM(1)")< Ciol(2—5) + 0,,)"? (4.39)
and thus (4.36) follows.

Proof of (ii). Let {4,},_ > 4,=1[5,_1,5,), be a decomposition of
[0, T'] in nonoverlapping intervals of length §,,/2 < |4,| <4, for all n. By
(4.16)-(4.18) we obtain

P.({ sup [[y:i(t) = yi(s)]+[ya(t) = yals)]| > &})

1,5€[0,7]
|1*5F<5m

<P, ({3, j: t;ed,and k(z,, 5,) > 1})

+”§1 I:Pm ({Linl f dN(z, x, v)o lvn(x)l >§_}>

+P, ({f:“w) 3 le dN(z, %, )
&

Xk (5 5,02 [ng] 2k (5, 5,) =k (5, 5, 1) 2 1)>—})

+P, ({j ’ dN(z, x, v)
(Sn—1—0op) v O Rl

x [o*k* (1, 5,)+ 1)? B] >§})J (4.40)

822/55/3-4-13
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Since k*(1,,5,)<0,(1+C,/v,)v,/26 for all t;ed,, it is obvious that
P, ({3n, j: t,e 4, and k(t;,s,)>1}) goes to zero as m — 0.

The first and second sums on the right of (4.40) are easily estimated
by Chebyschev’s inequality using the p correlation function of the point
process N for p> 2. For the first sum we obtain, for example, the bound
(0>1)

p
Clzm“em”{meml/zmlfh(v)vzdv} —CL,®ImP P2 (4.41)

and therefore choosing p > 6/(6 — 1/2), one can easily show that the former
sum converges to zero as m — 0.
Similarly, one can prove that also the second sum on the rhs of (4.40)

converges to zero as m — 0.
For the last sum, observe that k*(r,s,)—k (1,5,)=0 if
|t —s,_1l <(L—x;)(Jv,] —B) "' and therefore

L
k*(t,s,)—k (1,5, < 2d(c )|v [0, +(Ci+Cy) (l;)(5m+am)

Then for m small enough
X(k+(‘cn Sn)_ki(ra Snfl)z 1)<X(|Uy| = 1/25m)

and by Chebyschev’s inequality

g <{L; 1—0om) v O J dN(T, ® U)

xoakt(1,8,) k7 (1,5,_1)= 1)2%})

<Y E, <f du | Mu, dx, do) ok * (u, 5,) |0 |)
3n=1 (Sn—1—0m) v O joyl > 1/26m Y
1 2
<Cpo5 ”mlmw/zduh(v)|vy| (4.42)

and this concludes the proof of (ii).

Proof of (iij). Part (iii) asserts that “slow” collisions do not con-
tribute in the limit m — 0. The proof of this assertion is not substantially
different (for the two-dimensional model) from the one given in ref. 1 if one
notes that for ¢;+ o;=first time after 7, at which the jth atom reaches the
wall we have that o;=d(¢,)/|(v;"),| = 6/3B >0, for m small enough.
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As stated before (i)-(iii) imply C-tightness in D([0, o), R) in the
sense of ref. 4. From the proof of Proposition 5.7 in ref. 4 we obtain for our
situation even the following result.

Proposition 4.1. Let f and y be as in Theorem 4.1 and for o < 1/2,
Y <ya/B, and T < oo let

Q,={ sup [V, ()= V()| <m”}

|t — 5| <m9 1,5 < oo
Then
lim P,(Q%)=0

m—0

Corollary 4.1. On Q, we have that forall e>0, 13 ;,>u>0, and
m sufficiently small

Mo RYZ ([ doh,(0) g, (0= V()

lo,l =28
x j dx y(x < 2d(u) tg v, (u)~ A L) (4.43a)
xed

and
Moo RYS|  do k(o) po (0= V),
x j dx 7(x <2d(u) tg v, ()" A L) (4.43b)
where

(v =V, (u) ] £m"
v+ V,(u)), — m'

tg v, (u)* )=

Furthermore, we have that for any je RY(0, T)
LY (4, CY AP (1, t—1)]<k(1;, 1) < LPH (1, () A Yy, t—1))]
(4.44)

where {;=(L—x,)|(v~V; )" and ¥*(1;,a) and ¥ (1, a) are the
positive and smallest solutions of

2d(t)) { W+ CEmd } .
1 e .
o v U e = f a (445)

J

C* are positive constants.
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Proof. To get (4.42)-(4.44) one can proceed as in (3.7), (3.8), and
Lemma 4.1, respectively, observing that on @,,, |V, — V| <m”, since for
all je R0, T) and k<k(t,, T), |1, —t,| <20,

5. LIMIT PROCESS

To establish Theorem 2.1, we need only prove the uniqueness of the
limit measure. For this we use the martingale characterization of diffusion
processes by Stroock and Varadhan. This amounts to showing the
following.

Theorem 5.1. For any feCER?), g1, g1, gx€ CL(RY), and
u1<u2< M <uk<S<l

lim E, ({f( 7o1)) — F(7 ()

t k e
[l e (2N Pt} TT ). Pl )=
where % is the operator

(L)X, V)= —b(X, V)V, [)V) +1/2{c(X)V.T* f(V)

and V,=(d/0v,, 8/0v,). _

We define a family of processes (V,(f);1>0) approximating
(V,.(2); 1=0). For any a> 0 and je R'(0, ), set (4v,),=(v; =V, ),, and
let ¢(;, a) be the smallest and positive solution of the following equation
[cf. Eq. (4.45) for C* =07:

2dt) [, 207 |
vy, [1 ), ‘”J“’ =a a1

Then the process (¥,,(t); 1= 0) is defined as follows:

Vm(z)=VO+U dN(z, x, ) {a(E(z, )+ 1)(dv), — a(k(z, 1)+ 1) V,o(z ™)}

= V0+f f dN(z, x, v) W(z, x, v; 1) (5.2)
0 YR;
where
E(tjs =1L, ;) o, t—1))] if <t x;€0;
k(z,1)=0 if 7>t o0r x;¢9,
Cj=(L_xj)(AUj);l

Note that dN above integrates only predictable functions.
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We shall use V,, X, =[,7,+X, when computing expectations
involving V,,, X,,. For this we prove the following.

Theorem 5.2. For any t<

li_1310 E, (7, ()= 7V, ())=0 (5.2a)
im E,(|X,(1)~ X,,())) =0 (5.2b)

Proof. We need only show (5.2a). We have

k(1)
I—/-rfn(l) - Vm(l) = Z { Z (ijk— V/Tk) - W(tj> xja Uj; t)}
jeRYO.n Lk=0
k(z,t)
+ Y Y (VA=Y (5.3)

je RY0,t) k=0

From (iii) of Theorem 4.1 it follows easily that

lim Em<
m—0

Furthermore, similarly as in (4.16) and (4.17), we have that for all
jeRY 0, T) and k<k(1;, T)

k(1. 1)

Y, V=V

je RY0,1) k=0

):0 (5.4)

Vik=Vie=a(dv;), 4+ 20k(V; ), +of *(0], Vi V) (5.5)

7’ J

where

k-1
FXO7, Vi V) =[1—(1—a)*](4v;), + o Z (=) (Vie—i 1)y

i

k—1
-2 Z (l_a)i(l/j,_k—i~1—-Vj7)y
i=0,k>1
— 27 M1 —ak—(1 —oc)k](v;)y (5.6)

It is easy to check that
k(1)
2, M7 Vi V)
k=0
<ak* (1, O[|(v;),] +2B]
+2k* (1, 1) sup {|V—V]I}+a?Bkt(t, 1) (5.7)

k< k(t),0)
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Hence, by virtue of Proposition 4.1, (5.5)-(5.7) yield for the first sum in
(5.3)

k(. 1)
lim Em< YooY (Vi—Vi)— W, x;,v) )
m—0 JeRY0,1) k=0
< rll—rpo E, <Jo le dN(z, x, v)

x |oafk(z, 1) —K(t, 1)) (v + V(1 7)), + alk(z, 1) —k(z, 1)?) Vm(r)y|>
+ ’111i£n0 E,, (jot " dN(z, x, v)

x [o2k * (z, 1)(v, + 2B) + 2ak * (1, 1> m” + 3B’k * (x, r)3]> (5.8)

The second term on the right of (5.8) is easily shown to be zero. For the
first limit on the rhs of (5.8), note that the definition of ¥*(¢;, {;) of (4.45)
implies that

0SSP (1, )= ¥ (1, [)SACH + CT)m"{[(4vy), (26) 2

Therefore, if Av,/Av2<m "7, then k(1;, 1) and k(z;, ) may differ at most
by one for m sufficiently small; this is possible only if there exists an integer
n such that

LA(C* +C™)(dv),

3/

In—@(tj’ 4’}) A (P(tj» t— tj)l <

§*(4v));
(C )
o
Thus, for all je R'(0, t),
~ (4v;), s N
k(t;, t) #k(1;, 1) and ng i ) {GAa—1)el,} (5.9
Jjlx n=0

where N(v;")=[L(v; ),/0|(v;)|] and I, is the interval

! 2y —Cm’
[261(?;) m(’? -C,.) {1 + —W—‘ {n Cm)}a

2d(t) ——— (1 C,y)

2V 4+ Cm?”
1+—2
|(4v;),|

Goy, 7 Cm)}] (5.10)
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with length

d(1)) m”

\I,| <D, ——
' (4v))?

(5.11)

Therefore, the first limit on the right of (5.8) is bounded by

E, <X(3j€ Rl(o, T): (Avj)y (Avj);2>m—y’/2)
XJ"[ dN(7, x, U)a(2k+(,[’ 1) UyB+2k+(‘L', t)z B))
0 YR}
+E, (LJ (dN(z, x, v) a(|v,| +2BLk " (7, 1) +1])

NOY
SRICINERES)

The first term is easily shown to converge to zero using Schwartz’s
inequality and observing that, by (2.7),

Em(x{-})sszdu h(v) 0, 7(v, > v¥2m 2+ 2y < Dym?  (5.12)
By virtue of (5.11) we obtain for the second term the bound

D4pmm""J dv

vy 228
X h,(vyv,[v,+2B(Lé ' tgv+1)]tgv dv,/4v]
<Dsm”

where tgv=v,/v, and D, through Ds are constants.
We have thus established (5.2a).

Proof of Theorem 5.1. By Theorem 5.2, Theorem 5.1 will follow

once we show that

tim B ({770) = 1(Paton = [ (201X, 0, Pt}

S ATBS

k
X H gi(ym(ui)s I7m(“i))>=0 (5.13)

i=1
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Stroock and Varadhan (ref. 6, Corollary 4.2.2 and Exercise 4.6.6) showed
that we need only prove (5.13) for the functions fi(V)=V,+V,,
L(V)y=V,V,, and f3(V)=V2Z+ V]}. We shall begin by proving (5.13) for
f= fl: ie

lim E,, <{f1( P 0))— £(Pls))
_ j I (0, T )+ by (Fon(at)y Vn(at) Vm(u)y)}

X 1_[ g, (X,.(u,), ,,,(u,-))>=0 (5.14)

The definition of ¥, (¢) implies that ¥, (s)=7,(¢) for s>15s and for
§<71gs We have

[T 1)) = £1(P,u(s))
= Jz f dN(t, x, v)o dv_ y(x€d,)

+Lt J dN(z, x, ) [ Wz, x, v; 1) — W(t, x, v;5)], x(xed,, |v,| >2B)
(5.15)

where 0, and J, denote the boundaries of the molecule parallel and
orthogonal to the wall, respectively. One easily computes that

J,I—rpo Em <J: f dN(Ta X, U)Ol Avx X(XEEZ) H gl)

tATBS
= lim Em<—j du bV, Hg)

m—0 SATBS

—lmE, <— | " b7 ) ] g,.) (5.16)
S ATBS

m—0

where we have used in the last equality Theorem 5.2 and

H gi 1_[ g m(u m(ui))

Because of Theorem 5.2 and Corollary 4.1, we need only evaluate the
expectation of the second integral on the rhs of (5.15) on £,,.
Furthermore, we may assume that s>g¢,, t—5>0,, and yu, <s—a,,
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By Corollary 4.2 we obtain, observing (3.16), that

Iim E,, <r J dN(t, x, v)[ W(1, x, v; t) — W(z, x, v; 5} ],
m—0 0 N
XX(xegla vl >2B)n gi>

~ lim E,, ({— jt”B"sdupmaLH dv b (V) — 0242V, (1), v, ]

m-—>0 S A TBS vy < —2B

n J " wa dv h,,(0)[v—V,(u")],

0

xj dx [W(u, x, v; t)— W(u, x, v;5)],
xed| :

X x(x <2d(u) tg v,,(u)*t A L)} Il g,-) (5.17)

From now on, for the sake of simplicity, we shall denote by = equalities
which become true in the limit m — 0. For any s, t > o,,, we have that

Wu, x, v; t)— W(u, x, v; )
= W(u, x, v; 0) y(uels, t])
— [ W(u, x,v; 0)— W, x,v; )] x(u>t—a,,)
+ [ W, x,v;t)— W(u, x,v;8}] x(uells—a,,s]) (518)

Next we prove that
tATBS
Em du mOCL dl) hm v v— Vm _
({J;A‘c&(; ,D J“[Ivy|>23 ( )|[ (u )]yl
xj de(uxvoo}Hg)
xed
L ATBS
:E,,,(— [ b, V),

S A TR

x {1 +o7! H [ doh(v) [5— v F(n(X,,,(u), v))

0, (F (X 10), 0)) (X (1), 0)) = FOn(X (1), 0 ]m})
(5.19)
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and that

Em<{ftmwdupmoch do by o)V, )],

xf ; dx [2W(u, x, v; t)— W(u, x, v; 0) — Wlu, x, v;5)],
v < 2dw) g a0 2 T 3,

~E,, <pmaL2 H dv h,(v) v,

vy>2B

% {2d(s) Fn(Xo(s A T5.5), ) — 2d(1) F(X(t A 75, 00} [ g,)

(5.20)
then (5.14) will follow from (5.16)-(5.20) by observing that
d
7y Em(2d(u) F(n(X,,(u), v)))
u
=E, 2V, (u" )[F(n(X,.(u), v)) = F'(n(X,, (), v)) (X, (u), v) 1) (5.21)

For (5.19), by (4.2) and (4.3) of Corollary 4.2, we obtain that
I ATBS
E d dv h -V, (u~
([ [ o)=Yt 0,
xj dx W(u, x, v; ), x(x <2d(u) tgv,(u)* A L)]] g,)
xed

~E, (j dup, o ﬂww dv h, (v) La dx [K(u, 0)+ 1]

) {0220, V(™ )~y 0) 0, V™), ) 2(x < 2d00) tgo(a) A L) ] g,-)

(5.22)
where tg o(u) = |4v,| [0, + V,,(u"),] "
Set
LAvy ~ I
O TR v)_cp<u, Mm)
2d(u) t
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then the change of variable x - = o(u, (L —x) |4v,| ') leads to
J dx [k(u, 00)+ 17 x(x < 2d(u) tg v(u) A L)
xed|

|4v,|

{ y(2d(u) tg v(u) > L)
Av,

() AV (u-
xj"(’ dn<1+—"’(”—)¥n>[n+1]
0 Av

y

=2d(u) —=

m(u,v) AUy

2w gowy <L) [ dn (1 $ ), n> [+ 1]} (523)

By Taylor expansion we obtain that

1m0l v) — a{u, v)| < D3, 0772 (5.24)
and
[0, ) — 1] =13 (u, 0) + 4V (1), Lo, + V™), 17 ol 0)]
<D (140} v, )0} (5.25)
D5, D, are positive constants.
Since no(u, v) = a(u, v) — 2V, (u"), 4v, " no(u, v)?, by (5.24), we obtain

that for m sufficiently small the first integral on the rhs of (5.23) is equal
to L. For the second integral of (5.25) we have that

n0(x, v) 4y, (u")
d 1 _m -y
f 11< + v, n)[n+1]

nu,v)

no(u.v) 4V (u-
:j dn<1+——fd(i&n>[n+1]
no(u,0) — 1 U_y
Vil "),
W)_a(u v)[nolu, v)]

no(u,v) — 1
+J dn ([n+ 11— [nolu, )1) + o(no(u, v)* (4v,) %) (5.26)

n1(u,v)
By (5.25), [[n+ 11 —no(u, v)| <1 for ne [1,(u, v), no(u, v) — 1] and B large
enough; therefore, again by (5.25),

lim m!? H dv B, (v)[02 — 2V, (u ), ] 2d(u) 2
vy>23

m—0

|4v,|
Av

¥y

no(u,v) — 1
x| dn |[n+ 11— ol v)|

111, 0)

<lim m*® ([ dvh,(0) v,4B(In, ()] # Dro(w ) = 1) =
m—0 v,>2RB
(5.27)
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Furthermore, since [1°_, dn [#1n=(no— 1)*/2 + 1o F(n,), where F(-) is the
function defined in Theorem 2.1, then we have that

j"O“"”’ dn <1 4 7))y ,,) [n+1]-— AVl )y o, v)[10(1, v) ]

o, v) — 1 Avy Uy, — Vm(u_)y
= o(u, ) + 4V, (u™), Av, " no(u, v) Fno(u, v)) — 20w, v) 2V, (1),
X [0, + V™), 17" [nolu, v) F'(no(u, v)) + Flno(u, )] (5.28)

where F'(-) denotes the first derivative of F(-).
Finally, by (5.23) and (5.26)—(5.28) we obtain

Ba( [ dupna ] doha(0)] s T )+ 1000320, V,lu),]
X x(x < 2d(u) tg v,,(u) ™ /\L)Hg)

~E, (f " dup,al ﬁ o)

) (02— 2Vt )y 0y~ AV ), 0,100t ) F (1ol 0))} T g,-)
(5.29)

Similarly as before, ie., using the same change of variable and observing
that (%, dn [n][n+11=2n0F(n,), we can show that

E,, (— f n du p,,o Huy>z13 dv h,,(v) Leal dx [k(u, c0)+1]

SATRS

x k(u, 00) V,(u™ ), v,2(x <2d(u) tg v, (u) " A L)]] g,-)

INnzBs
B (= [ auppar [ doh(0) 27,007, 0, Foron o) [T 8,

(5.30)
Hence (5.17), (5.29), and (5.30) imply

lim E, (j [ dN(z, %, 0) Wz, x, 03 00) y(x €3, Iv,1 > 2B) ] g,-)

L Em( f " du b, Vo~ )y{1+¢”ﬂ”0duh b)o,

m—0 SATBS 'y

x L2F" (1o(uts m="720)) oty m~V2) + Flnou m-wv))]} 11 g,»)
(5.31)
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Then (5.19) will be an easy consequence of (5.13) upon observing that
0 .
oy [0} F(n(X, v))] =v,[F'(n(X, v)) n(X, v) + 2F(n(X, v))]
¥y

where (X, (u), v) = Lv,/2d(u) lv,| (cf. Theorem 2.1).
To prove (5.20), we first note that

B ([ [ dNex LW e 501000 WG x50,
X x(xe€d,, lv,|>2B) H gi)
B ([ Ve s oW s 0= Wiex i),
xﬂxe%,WA>2B”ng

~E, (f” du p,,a jjvym dohy(0) | dx (R, 20) K 1))

odyx <2400 tgo0) ~ L) [ 8,
+Em(ﬁAw“wpm@ﬁwﬂBmMMWXwah[EWJ)—HWSH
X vf,x(x <2d(u)tgo(u) A L) n g,—) (5.32)

Then, using the change of variables

xon=p (L—x)|dv] "), u—o=0ut—u)
and proceeding in the same way as in (4.31) and (4.33), we can easily get

(5.20).
Now let us consider the case f = f,; we have to prove that

E, ({fzw,n(r))—fz(?m(s))

N J\t/\ TB,§ du bx Vm(u_)x Vm(uw)y‘}' by()?m(u)s Vm(u‘)) Vm(u’ )x} H gl) :0

S A TR
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For simplicity we put ¥,=0. We introduce for all 0 <’ < u
G(u', u) =J Ja’N(r, x, v) W(z, x, v; ©0) x(|0,)| >2B)
0

and we obtain that

SV (1)) = oAV (s))

=Ht dN(t, x, v) W(z, x, v; 0), V(v "), x(x€ 0y, |v,] >2B)
0
+ HS’ dN(z, x, v)o Av, Vm(r’)y r(xed,)
+ H, dAN(z, x, v)[ W(z, x, 0 1) — W(z, x,0300)1, 7,z ) x|, ] > 2B)

+ﬂs dN(z, x,0)[W(z, x,0;00)— W(t, x,0;5)], V,.(t ), x(lv,| >2B)

m

+ﬂ dAN(z, x, v)a v, [G(, 1) — (e ™)1, 2(x € 35)

+ H dN(z, x, v)a dv, [G(1, 1) — G(1, 5)], z(x € 5) (5.33)

Proceeding as (5.16) and (5.31), we get that

E, ({H dAN(z, x, )0 Ao, V(e ), 2(x€5)
SR AT WA Y

tATBS -
~E, <~ | b v ), V),

S ATBS

by (X)) V™), ()1 T g,-)

1 ATBS -
+E, (f " du 209, LV (™), Vo),

SATBS

x vy Mo(u, v) F'(1o(u, v)) — Flno(u, ) > [ g,-) (5.34)

where n4(x, v) is the function defined in (5.26) and <(-))> denotes the mean
with respect to the measure 4,,(v) dv.
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In a similar fashion as in (5.30), one can easily show that

E, ({H’ dN(z, x,v)[ W(t, x, ;1) = W(t,x,0;0) 1, V(") x(lv,| >2B)

+Hs dN(z, x, 0)[W(z, x, v; 0) — W(z, x, v; 5) 1,

m

< Pole)onllo) > 28} 1
S (= 20maL Pl ), I 1 72,0, 0
75 )< Pt A 00 ] 1) (535)
and, by Corollary 4.1,

lim E, (j derxv)aAu [G(e, 1) — Pz )], x(xedy) Hg)

m—0

. tATBS
— lim E,, (J du2pLM D, |

m—0 SATBS

xﬂu dN(z, x, V)[W(t, x, v 6) — W(t, x, v;u)], Vot ) [ g,\

m

tATRS
= lim E,, (f " 2p LM D, V(4 ), 20,0 Ld(u)

m—0 SA TR

< o, X, o) 1 (536)
Note that d¥,,(t7),=a dv, y(x € 8,) dN(z, x, v) and
E, (j U du2pLM B, V() 2paLd() o, FOp(X (), 0))5 ] g>

SATBS

=E, (f dN(z, x, v)a Av, y(x €3,)

% {20, Ld(z) o, Fn(X,,(2), o))} [ g,->
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Then integration by parts and using (5.36) shows that
E, <ﬂ dN(z, %, v)a Ao, [G(t, 1) — V(e )], 2(xe 8 [ g,)
~E, <2pm06L{ Pt ) 1), F(X, 1), 0) >
7l el <o F X)) T )
_E, ( L’ du 20, 0LV (), V™),

X CF((X (), 0)) 0(X, (1), 0) F'(n(X,(u), ) [ gz-) (5.37)

Finally, we observe that G(«’, u) as a function of u is increasing and for all
t<s, E,(G(z, 1) — G(1, s)) < D, for some positive constant D,; therefore,

lim E, <f " AN x, v)a dv, y(x € 8,)[G(r, 1) — Gz, )1, T] g,—> -0
m— 5 A TBS
(5.38)

so that for f= f; will easily follow from (5.34), (5.35), (5.37), and (5.38).
Finally, we shall consider the case f = f;, i.e., we have to prove that

tim B, ({700 = £ P = [ i (=28, P, Pt 1)

SATRS

—2b (X (), V4™)) Vot )+ [07 + Uﬁy(i’m(u))]} [ gi) =0 (539)
Since by definition of the process (G(z, 0 ); t=0) and (5.2) we have that

fB(Vm(t))_f3( I‘7m(s))

=jt f dAN(z, x, v)(o Av,)? x(x € d,)
+2 thdN(r, x,v)adv, ¥, (t7), x(xed,)
+ftJdN(r, x, ) W(1, x, v; 0)2 y(x €8y, [v,| > 2B)

2
+2 [ [ NG, x,0) Wz, x, v; @), x(x €8, |v,| > 2B)

+ [V.(17)2=G(t, 0)21 = [V,(s )2 — G(s, )] (5.40)
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Then, in a similar fashion as in (5.34), one can easily see that
lim E,, ({f j dN(z, x, v)(a Av,)? y(x € 3,)
m—0 s
t N - \
— [ J v x 0@ a0 s(xe o) T &)

= lim E, <f’ " o= bV )] g,.> (5.41)

SATBS

Next we shall deal with the expectation of the third term on the rhs of
(5.40). Since o’[k(u, 0)+1]*>4v? is the only part of W(r,x,uv;w)?
that contributes in the limit m—0, by (5.23)-(5.28) and (5.30) with
a’m~"*(v,)* instead of am ¥, (u~), one can prove that

lim E,, (f [ aN(, x,0) Wz, x, 05 00)2 1(xe 8y, v, > 2B) [ g,.>
— h ! -2 —1 3
~ lim E,, (f du4pLM @, [1 +(®5,) ﬂw L dehy(0)0]

2P o) |1 ) (542)

Therefore, to complete the proof of (5.13) with f= f;, we need only show
that

r}li_rpo E, <{2 J: j dN(z, x, v) W(z, x, v; ©), G(1, ©©), y(xed,, {v,| >2B)
#U707)3= G )1~ [7ls B Gls, 81| T 8,)

= lim E, ( - J dut 25 (X (), Vi) Vol ), ] g,.> (5.43)

Since G(u', u) # G(u', o0) only if u—c,, <u' <u and since for all T< +o0

T
,,1.1210 E, <j0 de(r, x, v) [z, x, v; 0); — W(t, x, 0; T)2]

xy(xedy, |v,| >2B)> =0

822/55/3-4-14
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we have that the lhs of (5.43) is equal to

m—0

lim Em<{2fj dN(z, x, v) W(t, x, v; ©), G(t, ), 7(x€8,, v,| > 2B)
s Ym-0

~[" [V x o)W, x, 0 0),  We, %, 0510),1 Gl 1),

x y(x €0y, |v,| >2B)

+ r J dN(z, x, ) W(z, x, v; 0), — W(1, x, v;5),] G(, 5),

m

X y(x€dy, |v,| > ZB)} 11 gi> (5.44)
Now note that
E,, (f_am f dN(z, x, v)[ Wz, x, v; ), — W(t, x, 0; 1), ] G(1, 1),
xy(x€dy, |v,|>2B)[] g,->

~E,, ({r_ J dN(z, x, v)[W(z, x, v; 0),— W(1, x, v; 1), ] G(1, 0),
x x(x€dy, |v,| >2B)
—12 f’ de(r, x 0)[W(z, x, v; 00), — W(z, x, v; 1), ]

X y(xed,, |vy[>2B)}ng,-> (5.45)
and set for all u<¢
A, (u) ='[t duj Ay, dx, dv)[ W(u, x, v; 00), — W{u, x, v; 1), ]
0 loyl > 2B
and

M (1) = L [ vz, x, o) [ Wi, x, 03 00),~ W(e, %, 0:1),]

X X(xegl, lv,| >2B)— A,(u)
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Then (M, (u); u<t)is a G,-martingale and therefore
B ({1 J Ve x W x 01 00), — Wi 0,
xy(x€dy, |v,| >2B)} I1 g[>
=E,, <[A,(z)2 + M (1) =24,() M ()]]] gi>

~E, ([4PLM1<F('1(Xm(t), v))>1*[] g,-) (5.46)

To get the last equality we have also used (5.32), (4.38), and Schwarz’s
inequality to prove that

limo Em <[Mt(t)2_2At(t) M,(t)] l—[ gi> =0

Thus, (5.43) will follow from (5.44)-(5.46) in a similar way as in
(5.34)-(5.36).

APPENDIX
We shall prove
P({ lim 15,=00})=1 (A1)

B— 00,00

with 7,=inf{r>0: |V(r)} = B} and t;=inf{7>0:d(X(t))<5} we have
Tps=Tpy A Ts. Since, for any r<rts, Tr(c(X(t))<const-(1+6') and
{B{X(t), V(¢t), V(¢)>, where {-,-> denotes the scalar product in R? it
follows (see, for example, ref. 7, Theorem 3, p. 33) that for any T'< 4+

P({ lim ©,<T At,})=0 (A.2)

Therefore it remains to prove that

P({}in})ré:oo})zl (A.3)
Let b,(x) =b,(x, v)/v. We shall prove (A.3) under the hypotheses that

fol dx b,(x) =0
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and

sup b,(x)/o},(x)=>0  forsome a>0

xz0

Let (y(2), v(¢); t>0) be the process defined by the y component of the
process (X(t), V(2); t=0), ie., (p(1), v(t); t >0) is the process satisfying the
following stochastic differential equations:

dy(t)=v(t) dt
do(t) = —=b,(y(t), v(1)) dt + 0, ( (1)) dw(?) (A4)
¥(0)=X(0),=y,, v(0)=V(0),=vy, (w(t);2=0)standard Wiener process

Define 1= {J"dsal(y(s)), and let (z(¢);1>0) and (u(t);1>=0) be the
following processes:

u(t)=v(71(1))

»T(@) _
a0=[ dyb()

Yo

f ds o(T(s)) b,(»(T(s)) o3, (W(T(s))] "
B

= B(y(1(1)) (A.5)
Then
du(t) = —dz(_t)+dw(t) (A6)
dz(t) = u(t) b,(y(T(2))) o}, (¥(T(2)))] ™" dt

For any A>0, let (z,(¢);t=0)= (z(At)/\/Z; t20); then, (z,(z);1=20)
converges weakly as 4 — o0 to a Brownian motion (w(¢); ¢ > 0).
To prove this assertion, it is enough to show that for any ¢>0

lim P({ sup [|u(t)|/\/A>e})=0 (A7)
A—© 1e[0,4]

For this note that from (A.6)
du(t)= —u(t) b,(y(T(s)))La3,(¥(T(5)))]~" dt + dw(z)

and then observe that sup,., {6,(x)[0},(x)]"'}>a (A7) follows by
routine arguments.
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Next we shall prove that

(i)  T(eo)=lim7,=7

T
(i) T“f ds 0%, [ B~ (z(s))]~!
4]
converges in distribution as 7 — o to

a“fldsx(w(s)e(o, 00))

where a=1lim, _, ,, o ,(x). Note that
T()= [ ds o, 1B (2())] "
and by (i)
P({lim =, = 0 }) = P({T(a) = 0)

—P ({f ds a2, [B~(z(s))] ' = oo}) (A8)

Therefore (A.3) will follow from (i), (ii), and (A.8), since by the arcsine law
(see ref. 8)

limO lign sup P ({A*1 fA dso?,[B '(z(s))] " <£})
= lim P ({f ds y(w(s) € (0, oo))<as}> =0

e—0

Proof of (i). By (A.4') it is sufficient to show that

P({fo ds aﬁy(y(s))<oo})=o (A9)

Let us assume that (A.9) does not hold; then there exists an « > 0 such that

P <{JOT dsol,[y(s)] < oo}) >0
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and since M(t)=§3 dw(s)o,,(y(s)) is a martingale with (M), =[{ds

05,(¥(s)), and Llim, . M(r) exists on a set of positive measure. By (A.4),

»(2) B
M) =V(1)+ [ dxb(x)

"
and for all »
tim [ dx 6,(6) = [ ax b= o
R 0

Hence lim,_, v(¢)= +co on the set on which lim, , M(¢) exists. This
implies that there exists an >0 such that {T_ dsv(s)>0, but this is
impossible since ji_s dsv(s)= —d(y(t—¢))<0. Thus, (A.9) holds.

Proof of (ii). Note that B~'(0)= y, and lim, _, ,, B~'(4"*z)= +
if z>0 and 0 if z < 0; then we have that

Uiy(yo)‘1 if z=0
) 3 3 lim 6% (x)"'=a if z>0 (A.10)
Alllnwaf,y[B 472z)]17 =< x50 7

lir(I)l o3, (x)"'=0 if z<0

x =0+

Thus, (ii) will easily follow from (A.10) and the weak convergence of
(z,(1); 1> 0) to (w(z); > 0) by observing that

471 [ ds o, (B z(s)] ! =J1 ds 02,[ B~ (4"7z4(5))] "
0 0
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